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Abstract 

This review paper discusses various analytical models that can describe the vehicle-track system without requiring 

extensive and computationally demanding numerical models. All these analytical models aim to capture the 

behaviour of the track structure as a rail vehicle passes over it as accurately as possible, each in its unique way, 

depending on the assumptions they are based on. The objective of this paper is to evaluate their potential and 

limitations from different perspectives, such as computational simplicity, result availability, solution accuracy, 

and variability in solution forms. 
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1 INTRODUCTION  

Given the current trend of increasing the design speed of railway vehicles, the overall applied load must be 

considered, as it inevitably increases due to its dynamic component [1], despite the evident efforts to reduce the 

weight of train sets [2]. 

The total load on railway structures consists of both static and dynamic components. Static loads are associated 

with the self-weight of the structure and stationary loads from train sets. Dynamic loads result from the interaction 

between the wheels of a moving train and the rail [1].  

As the load on railway structures grows, so do the requirements for their resistance to stress, stability, durability, 

and safety. The track structure must provide adequate support for the movement of railway vehicles without 

permanent deformations that could negatively impact any of the aforementioned criteria [3]. 

It is essential to understand the physical processes occurring during the movement of railway vehicles, making 

track deflection analysis a valuable tool to design railway structures effectively. 

This paper aims to provide an overview of available analytical models for analysing and predicting track 

deflection. These models offer insight into the physical nature of the phenomenon, each adopting a different 

perspective and utilizing distinct or similar tools and principles. The paper does not present new experimental data 
but synthesizes and consolidates existing findings. It primarily focuses on classical and advanced contact models, 

summarizing their assumptions, advantages, and limitations. The comparison of these methodologies can serve as 

a basis for selecting an appropriate approach to railway track design that meets the increasing demands of the 

modern era. 

2 METHODOLOGY 

Two fundamental concepts emerge in geotechnics: active loading and passive resistance. Active loading results 

from the application of actual external forces on a foundation structure. Passive resistance, in turn, is the reaction 

to these external forces and manifests through deformation. There are two primary approaches in geotechnics for 

determining passive resistance [4]. 

The first approach is the elastic half-space. This concept is based on the fundamental assumptions of elasticity 

theory and is intuitively the most natural choice. However, apart from the model case of a single force acting on 
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a homogeneous isotropic medium, as described by Boussinesq, this approach becomes computationally very 

complex for more intricate cases, making it challenging to obtain a solution [4]. 

The second major approach for determining passive resistance is contact model, which stem from entirely different 

considerations. A contact model fundamentally concentrates the properties of the subsoil into the contact interface 

between the structure and the subgrade. The most common and oldest contact model is the Winkler model, which, 

however, neglects shear cohesion. Other contact models build upon the original model by incorporating various 

assumptions. For instance, the Pasternak model includes a shear component, thus addressing a key limitation of 

the primary model [4]. 

There are also different strategies for modelling. The first approach involves a static analysis, where the model 

assumes that the load is applied slowly and uniformly or remains entirely constant, with no inertial forces 

generated. The second approach is more complex, extending the static model by incorporating dynamic elements, 

meaning it accounts for loading that varies over time and includes the effects of inertial and damping forces [5]. 

Static models 

Timoshenko model (Zimmermann model) using the Winkler foundation model 

Winkler was the first to describe and analyse the interaction between foundations and subgrade soil as an elastic 

beam on an elastic foundation. In his model, the subgrade behaves as a system of independent springs. This model 
is simplified by neglecting the effects of horizontal forces and deforming only in the region directly under the 

applied load, meaning no deflection basin is formed [3].  

In railway construction, the Winkler foundation model can be envisioned as an infinitely long beam resting on an 

elastic foundation - Timoshenko's model of a rod in elastic confinement. The beam represents the rail, 

characterized by bending stiffness, while the elastic foundation represents the subgrade, expressed by stiffness k. 

The rail is subjected to a stationary wheel force Q at a given location x. The response to this load manifests as both 

rail deflection and subgrade compression. This is an analytical, statically indeterminate problem, meaning there 

are more unknowns than the number of equilibrium equations available. Therefore, deformation conditions must 

also be used. The solution involves determining equilibrium equations and using the bending equation. In railway 

construction, Timoshenko's model is also referred to as the Zimmermann model. The solution is derived from the 

differential equation (1) [1], [6]. 

𝐸𝐼 ∙
𝑑4𝑤(𝑥)

𝑑𝑥4
+ 𝑘 ∙ 𝑤(𝑥) = 0 

(1) 

where EI is the flexural rigidity of the rail in Nm², w(x) is the vertical deflection in m, x is the horizontal coordinate 

in m, and k is the Winkler modulus of the elastic foundation in N/m², and parameter k describes the stiffness of the 

subgrade. 

Pasternak foundation model 

The Winkler foundation model does not account for the shear cohesion of the soil. The foundation deforms only 

in the area directly under the load, without forming a deflection basin. As a result, it is not possible to determine 

the extent of the effects on surrounding structures [3]. In railway construction, which Timoshenko studied, the 

continuity of deformations due to track loading is ensured by the stiffness of the track structure, which rests on the 

subgrade. Timoshenko likely did not see a need to introduce assumptions that would enforce interconnection 

between soil points [1]. Another consequence of the absence of shear interaction is that the predicted deflection is 

greater than what actually occurs [2]. The Pasternak foundation model, which is derived from the Winkler model 

by introducing a shear interaction term within the soil, addresses some of the aforementioned limitations and 

provides a more accurate representation of the behaviour of the soil medium under loading [3]. The model 

considers an infinitely long rail subjected to a wheel force 𝑄. The rail is characterized by bending stiffness 𝐸𝐼 and 

is rigidly connected to a shear element, which deforms only under the influence of transverse shear forces. This 
shear element is placed on an elastic foundation, representing the subgrade. The solution process is similar to that 

of the Timoshenko model. Due to the number of unknowns exceeding the number of equilibrium equations, the 

bending equation must be employed [1], [5]. The solution is derived from the differential equation (2). 

𝐸𝐼 ∙
𝑑4𝑤(𝑥)

𝑑𝑥4
− 𝐺𝐴 ∙

𝑑2𝑤

𝑑𝑥2
+ 𝑘 ∙ 𝑤(𝑥) = 0 

(2) 
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where EI is the flexural rigidity of the rail in Nm², w(x) is the vertical deflection in m, x is the horizontal coordinate 
in m, k is the Winkler modulus, which represents the stiffness of the subgrade, in N/m², and GA is the shear stiffness 

of the foundation in N/m. 

Static system of a two-layer model 

The two-layer system model refines the Timoshenko (Zimmermann) model by extending an additional layer. This 

enhancement enables the investigation of rail pads’ behaviour or the assessment of the subgrade. The first layer of 

the model can be interpreted, as in previous models, as an infinitely long rail. The second layer represents the rail 

supports, which may consist of transverse sleepers or a fixed track system [5]. The solution is derived from the 

differential equation (3) and equation (4). 

𝐸𝐼1 ∙
𝑑4𝑤1(𝑥)

𝑑𝑥4
+ 𝑘1 ∙ [𝑤1(𝑥) − 𝑤2(𝑥)] = 0 

(3) 

𝐸𝐼2 ∙
𝑑4𝑤2(𝑥)

𝑑𝑥4
+ (𝑘1 + 𝑘2) ∙ 𝑤2(𝑥) − 𝑘1 ∙ 𝑤1(𝑥) = 0 

(4) 

where EI1 and EI2 are the flexural rigidities of the first and second layers in Nm², specifically, while EI₁ describes 

the bending behaviour of the rail, EI₂ is typically small and captures the residual flexibility of the sleeper layer, 

w1(x,t) and w2(x,t) are the vertical deflections of the first and second layers in m, k1 and k2 are the elastic coefficients 

in N/m², specifically the stiffness k₁ reflects the elasticity of rail fasteners, and k₂ represents the deformability of 

the subgrade, and finally x is the horizontal coordinate in m. 

Dynamic models 

Frýba model (Timoshenko model for a dynamic system) 

The Frýba model is based on the Timoshenko (Zimmermann) concept of a beam on a Winkler elastic foundation, 

but it differs by incorporating a moving load, whose effects induce a dynamic response. Frýba included the 

influence of inertia and damping in the model. As a result, the infinitely long rail is characterized both by its 

bending stiffness EI and its mass m [7]. The solution is derived from the differential equation (5). 

𝐸𝐼 ∙
𝑑4𝑤(𝑥, 𝑡)

𝑑𝑥4
+𝑚 ∙

𝑑2𝑤(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐 ∙

𝑑𝑤(𝑥, 𝑡)

𝑑𝑡
+ 𝑘 ∙ 𝑤(𝑥, 𝑡) = 0 

(5) 

where EI is the flexural rigidity of the rail in Nm², w(x,t) is the vertical deflection in m, x is the horizontal coordinate 

in m, t is the time in s, m is the mass per unit length of the rail in kg/m, c is the damping coefficient (reflects energy 

dissipation in the track system) in Ns/m², k is the Winkler modulus in N/m² and describes the stiffness of the 

subgrade. 

Pasternak foundation model – dynamic system 

The model was developed by extending Frýba’s calculation with an element that transfers shear loading. It thus 

represents a Pasternak foundation model subjected to a moving force [5]. The solution is derived from the 

differential equation (6). 

𝐸𝐼 ∙
𝑑4𝑤(𝑥, 𝑡)

𝑑𝑥4
+𝑚 ∙

𝑑2𝑤(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐 ∙

𝑑𝑤(𝑥, 𝑡)

𝑑𝑡
− 𝐺𝐴 ∙

𝑑2𝑤(𝑥, 𝑡)

𝑑𝑥2
+ 𝑘 ∙ 𝑤(𝑥, 𝑡) = 0 

(6) 

where EI is the flexural rigidity of the rail in Nm², w(x,t) is the vertical deflection in m, x is the horizontal coordinate 

in m, t is the time in s, m is the mass per unit length of the rail in kg/m, c is the damping coefficient (reflects energy 

dissipation in the track system) in Ns/m², k is the Winkler modulus in N/m² and describes the stiffness of the 

subgrade, GA is the shear stiffness of the foundation in N/m. 

 

Two-layer system – dynamic system, Winkler foundation model 

This model is based on the previously mentioned two-layer system model, but it differs by considering the moving 

nature of the applied load [5]. The solution is derived from the differential equation (7) and equation (8). 
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𝐸𝐼1 ∙
𝑑4𝑤1(𝑥, 𝑡)

𝑑𝑥4
+𝑚1 ∙

𝑑2𝑤1(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐1 ∙

𝑑𝑤1(𝑥, 𝑡)

𝑑𝑡
+ 𝑘1 ∙ (𝑤1(𝑥, 𝑡) − 𝑤2(𝑥, 𝑡)) = 0 

(7) 

𝐸𝐼2 ∙
𝑑4𝑤2(𝑥, 𝑡)

𝑑𝑥4
+𝑚2 ∙

𝑑2𝑤2(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐2 ∙

𝑑𝑤2(𝑥, 𝑡)

𝑑𝑡
+ (𝑘1 + 𝑘2) ∙ 𝑤2(𝑥, 𝑡) − 𝑘1 ∙ 𝑤1(𝑥, 𝑡) = 0 

(8) 

where EI1 and EI2 are the flexural rigidities of the first and second layers in Nm², specifically, while EI₁ describes 

the bending behaviour of the rail, EI₂ is typically small and captures the residual flexibility of the sleeper layer, 
w1(x,t) and w2(x,t) are the vertical deflections of the first and second layers in m, m1 is mass per unit length of the 

upper layer (rail + fasteners) in kg/m, m1 is mass per unit length of the lower layer (sleepers or underlying mass) 

in kg/m, c1 is damping coefficient between upper and lower layer (fastener damping)  in Ns/m² and c2 is damping 

coefficient of the subgrade in Ns/m², k1 and k2 are the elastic coefficients in N/m², specifically the stiffness k₁ 

reflects the elasticity of rail fasteners, and k₂ represents the deformability of the subgrade, t is the time in s, and 

finally x is the horizontal coordinate in m. 

Two-layer system – dynamic system, Pasternak foundation model 

This model builds on the previous two-layer dynamic system. In addition to the effects of moving loads, shear 

interaction is also considered. The fundamental assumptions of an infinitely long beam on an elastic foundation 

remain valid [5]. The solution is derived from the differential equation (9) and equation (10). 

𝐸𝐼1 ∙
𝑑4𝑤1(𝑥, 𝑡)

𝑑𝑥4
+𝑚1 ∙

𝑑2𝑤1(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐1 ∙

𝑑𝑤1(𝑥, 𝑡)

𝑑𝑡
+ 𝑘1 ∙ (𝑤1(𝑥, 𝑡) − 𝑤2(𝑥, 𝑡)) = 0 

(9) 

𝐸𝐼2 ∙
𝑑4𝑤2(𝑥, 𝑡)

𝑑𝑥4
−𝐺𝐴 ∙

𝑑2𝑤(𝑥, 𝑡)

𝑑𝑥2
+𝑚2 ∙

𝑑2𝑤2(𝑥, 𝑡)

𝑑𝑡2
+ 𝑐2 ∙

𝑑𝑤2(𝑥, 𝑡)

𝑑𝑡
+ (𝑘1 + 𝑘2) ∙ 𝑤2(𝑥, 𝑡) − 𝑘1 ∙ 𝑤1

= 0 

(10) 

where EI1 and EI2 are the flexural rigidities of the first and second layers in Nm², specifically, while EI₁ describes 

the bending behaviour of the rail, EI₂ is typically small and captures the residual flexibility of the sleeper layer, 

w1(x,t) and w2(x,t) is the vertical deflections of the first and second layers in m, m1 is mass per unit length of the 

upper layer (rail + fasteners) in kg/m, m1 is mass per unit length of the lower layer (sleepers or underlying mass) 

in kg/m, c1 is damping coefficient between upper and lower layer (fastener damping)  in Ns/m² and c2 is damping 

coefficient of the subgrade in Ns/m², k1 and k2 are the elastic coefficients in N/m², specifically the stiffness k₁ 

reflects the elasticity of rail fasteners, and k₂ represents the deformability of the subgrade, GA is the shear stiffness 

of the second layer in N/m and t is the time in s, and finally x is the horizontal coordinate in m. 

3 RESULTS 

The following Tab. 1 is derived from the methodology and summarizes the components of the individual models. 

Tab. 1 Components of individual models. 

Model Bending Shear Dynamics 
Number of 

layers 

Timoshenko (Zimmermann) Yes No No 1 

Pasternak Yes Yes No 1 

Static two-layer model Yes No No 2 

Frýba Yes No Yes 1 

Pasternak – dynamic system Yes Yes Yes 1 

Two-layer dynamic model Yes No Yes 2 

Two-layer dynamic model with shear Yes Yes Yes 2 

 

The following Tab. 2 summarizes examples of possible analytical solutions [1], [5], [8]. For solutions that lead to 

partial differential equations (PDEs) or ordinary differential equations (ODEs), the number of equations and 
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unknowns remaining at the final stage of the calculation is provided in more detail [5]. The description of 

individual models is derived from the methodology and the complexity of the solution. 

Tab. 2 Comparison of individual analytical models. 

Model 
Examples of 

analytical solutions 
ODE/PDE Description 

Timoshenko 

(Zimmermann) 

ODE  

 

The ODE solution consists of 

4 equations with 4 unknowns, 

some of which drop out after 

applying boundary conditions. 

 

Basic vehicle–track model, 

simple solution, fast and 

accessible results. 

Pasternak 
ODE  

 

The ODE solution consists of 

4 equations with 4 unknowns, 

some of which drop out after 

applying boundary conditions. 

 

Vehicle–track model with shear 

interaction. One of the simpler 

solutions is relatively fast and 

accessible results. 

  

Static two-

layer model 
ODE system  

The ODE solution consists of 

4 equations with 4 unknowns. 

Vehicle–track model with an 

additional layer, without 

considering shear. More complex 

calculation. 

Frýba 

 

PDE 

Method of variable 

separation Fourier 

transform Laplace 

transform 

The PDE solution after 

variable separation is a system 

of 4 equations with 4 

unknowns. 

Vehicle–track model 

incorporating dynamics. More 

complex calculation. 

Pasternak – 

dynamic 

system 

 

PDE 

Method of variable 

separation Fourier 

transform Laplace 

transform 

The PDE solution after 

variable separation results in a 

system of 4 equations with 4 

unknowns. 

Vehicle–track model 

incorporating shear and 

dynamics. More complex 

calculation. 

Two-layer 

dynamic model 

 

PDE system 

Method of variable 

separation Fourier 

transform Laplace 

transform 

The PDE solution after 

decomposition into 

characteristic roots results in 8 

equations with 8 unknowns. 

Vehicle–track model 

incorporating an additional layer 

and dynamic behaviour. 

Complex calculation. 

 

Two-layer 

dynamic model 

with shear 

PDE system 

Fourier transform 

Laplace transform 

The PDE solution after 

decomposition into 

characteristic roots results in 8 

equations with 8 unknowns. 

Vehicle–track model 

incorporating shear, an additional 

layer, and dynamic behaviour. 

Complex calculation. 

 

 

4 DISCUSSION  

The analytical solution of each beam model depends on the complexity of their differential equations. These 

equations may include various components such as bending, shear, damping, and inertia, or be expressed with 

multiple layers and time dependency. 
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The simplest models, such as the Timoshenko model or the Pasternak foundation model, naturally lead to solutions 
using ordinary differential equations (ODEs). Their results can be obtained relatively quickly, even without 

computational software. Both models are suitable for obtaining initial estimates before using more complex models 

or for calculating track deflection for slow-moving railway vehicles, where dynamic effects do not play 

a significant role. The Pasternak foundation model additionally considers shear interaction, providing a more 

realistic representation of track behaviour. Although computationally more demanding than the Winkler model, it 

can still be solved without computational software by applying an appropriate substitution. 

The static two-layer system extends the Timoshenko model by adding a second layer, which can represent rail 

supports, such as sleepers. By considering two interacting layers, this model more accurately captures force 

transmission between the rail and subgrade, making it a closer approximation of reality compared to the 

Timoshenko model, where the subgrade is modelled as independent springs. This approach allows for an 

assessment of sleeper distribution effects on track deflection, which is logically absent in the Timoshenko model. 
However, for higher-speed railway vehicles, it is necessary to include dynamic behaviour, as a purely static 

approach may not provide sufficiently accurate results. Additionally, this model neglects shear interaction, which 

could affect deformation accuracy. 

The Frýba model extends the original beam model by incorporating dynamic behaviour and time dependency. The 

Frýba beam problem can be formulated as a partial differential equation (PDE) to determine the instantaneous 

response to loading. Even when applying simplified boundary conditions, this remains a complex, asymmetric 

problem, which may require numerical solutions for more complicated cases. The Frýba model is also useful for 

frequency response analysis, and it can be solved using Laplace and Fourier transforms. However, these 

transformations shift the problem to the frequency domain, meaning they do not directly provide track deflection 

results, but rather offer insights into how the rail responds to different loading frequencies (Fourier transform) or 

how it reacts to an impulse (Laplace transform). 

The Pasternak foundation model with dynamic behaviour can be considered an equivalent of the Timoshenko 
model but without the rotational inertia of the cross-section. Like the Frýba model, it can be analysed using Fourier 

and Laplace transforms, allowing for frequency domain analysis as described earlier. The standard approach for 

determining track deflection over time involves solving a partial differential equation (PDE), which is 

computationally demanding due to the inclusion of both dynamic effects and shear deformation. However, this 

provides a more realistic representation of track behaviour under loading, obtaining more accurate results 

compared to basic models. 

The most computationally demanding, yet also the most accurate models, are the two-layer dynamic model and 

its extended version with shear interaction. Solving the partial differential equations (PDEs) results in a system of 

eight equations with eight unknowns, which may require computational software. Like previous models, Laplace 

and Fourier transforms can be used for analysis, but they do not provide a direct solution for instantaneous track 

deflection. Instead, they enable an examination of the rail’s response to load in the frequency domain.  

It is important to emphasize that the computational complexity of these analytical models differs fundamentally 

from that of numerical methods. Since the models are based on differential equations, the primary challenge lies 

in the correct formulation and transformation of these equations rather than in solving them computationally. Once 

the equations are determined and can be implemented in a MATLAB environment, the solution itself can often be 

obtained within a few seconds. Most of the time required is thus spent on setting up the model, particularly in the 

case of more complex dynamic or multilayer systems. Once automated, the computational process becomes very 

efficient, making analytical modelling well-suited for practical use. 

Practical examples of applying analytical models can be found in both the study by Kulich and Plášek (2022) and 

the diploma thesis by Kulich (2017), both of which are based on measurements conducted on the railway track in 

Planá nad Lužnicí. The superstructure at the site consists of 60 E1 rails, W14 fastening systems, and B 91S/1 

concrete sleepers.  

In the aforementioned article, a two-layer dynamic model with Pasternak foundation was used for reverse analysis 
- that is, for the back-calculation of model input parameters to match the measured rail deflection under a passing 

passenger train. The observed rail deflection was approximately 0.6 mm, and the optimized model captured the 

deformation shape very well [9].  

In the diploma thesis, several analytical track models were compared under the load of a two-axle bogie of 

a traction vehicle travelling at a speed of 77 km/h. The measured deflections ranged between 0.9 and 1.0 mm. 

Among the simpler models, the Frýba model showed the best agreement with the measurements. However, the 

most accurate results were provided by the two-layer dynamic model with a moving load and shear interaction. 
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This model successfully captured both the peak deflection and the deformation behaviour between axles. These 
examples confirm that analytical models—when properly set up and calibrated—can realistically represent the 

behaviour of railway structures in practice [5]. 

5 CONCLUSION 

The article discussed various analytical models for railway track deflection, evaluating their advantages and 

limitations, and highlighting their suitability for different scenarios. Contact models are representative of the 

vehicle–rail interaction and are more appropriate for determining track deflection under railway vehicle loading. 

Advanced models that incorporate dynamic behaviour provide a more realistic representation of railway track 

behaviour under moving loads compared to static contact models. 

Future research could focus on numerical models, the combination of analytical and numerical approaches, as well 

as integrating computational models with experimental data and machine learning or using experimental data 

combined with machine learning to enhance the prediction of structural response to loading.  

From a practical perspective, the choice of a specific analytical model depends on the design stage, the expected 

train speed, and the required level of detail in the structural response assessment. The Timoshenko and Pasternak 

models are suitable for designing tracks with lower operational speeds or in sections where dynamic effects can 

be neglected. The static two-layer model provides a better understanding of the interaction between the rail and 

the sleepers and is therefore appropriate for designs involving fastener behaviour or sleeper spacing. For high-

speed lines or transition zones, it is necessary to employ dynamic models, such as the Frýba model or dynamic 

variants of the Pasternak model, which account for inertial and damping effects. The most complex models, such 

as two-layer dynamic systems with shear interaction, are better suited for detailed analyses and research purposes, 

where accuracy is prioritized over simplicity. 
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