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Abstract

This review paper discusses various analytical models that can describe the vehicle-track system without requiring
extensive and computationally demanding numerical models. All these analytical models aim to capture the
behaviour of the track structure as a rail vehicle passes over it as accurately as possible, each in its unique way,
depending on the assumptions they are based on. The objective of this paper is to evaluate their potential and
limitations from different perspectives, such as computational simplicity, result availability, solution accuracy,
and variability in solution forms.
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1 INTRODUCTION

Given the current trend of increasing the design speed of railway vehicles, the overall applied load must be
considered, as it inevitably increases due to its dynamic component [1], despite the evident efforts to reduce the
weight of train sets [2].

The total load on railway structures consists of both static and dynamic components. Static loads are associated
with the self-weight of the structure and stationary loads from train sets. Dynamic loads result from the interaction
between the wheels of a moving train and the rail [1].

As the load on railway structures grows, so do the requirements for their resistance to stress, stability, durability,
and safety. The track structure must provide adequate support for the movement of railway vehicles without
permanent deformations that could negatively impact any of the aforementioned criteria [3].

It is essential to understand the physical processes occurring during the movement of railway vehicles, making
track deflection analysis a valuable tool to design railway structures effectively.

This paper aims to provide an overview of available analytical models for analysing and predicting track
deflection. These models offer insight into the physical nature of the phenomenon, each adopting a different
perspective and utilizing distinct or similar tools and principles. The paper does not present new experimental data
but synthesizes and consolidates existing findings. It primarily focuses on classical and advanced contact models,
summarizing their assumptions, advantages, and limitations. The comparison of these methodologies can serve as
a basis for selecting an appropriate approach to railway track design that meets the increasing demands of the
modern era.

2 METHODOLOGY

Two fundamental concepts emerge in geotechnics: active loading and passive resistance. Active loading results
from the application of actual external forces on a foundation structure. Passive resistance, in turn, is the reaction
to these external forces and manifests through deformation. There are two primary approaches in geotechnics for
determining passive resistance [4].

The first approach is the elastic half-space. This concept is based on the fundamental assumptions of elasticity
theory and is intuitively the most natural choice. However, apart from the model case of a single force acting on
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a homogeneous isotropic medium, as described by Boussinesq, this approach becomes computationally very
complex for more intricate cases, making it challenging to obtain a solution [4].

The second major approach for determining passive resistance is contact model, which stem from entirely different
considerations. A contact model fundamentally concentrates the properties of the subsoil into the contact interface
between the structure and the subgrade. The most common and oldest contact model is the Winkler model, which,
however, neglects shear cohesion. Other contact models build upon the original model by incorporating various
assumptions. For instance, the Pasternak model includes a shear component, thus addressing a key limitation of
the primary model [4].

There are also different strategies for modelling. The first approach involves a static analysis, where the model
assumes that the load is applied slowly and uniformly or remains entirely constant, with no inertial forces
generated. The second approach is more complex, extending the static model by incorporating dynamic elements,
meaning it accounts for loading that varies over time and includes the effects of inertial and damping forces [5].

Static models

Timoshenko model (Zimmermann model) using the Winkler foundation model

Winkler was the first to describe and analyse the interaction between foundations and subgrade soil as an elastic
beam on an elastic foundation. In his model, the subgrade behaves as a system of independent springs. This model
is simplified by neglecting the effects of horizontal forces and deforming only in the region directly under the
applied load, meaning no deflection basin is formed [3].

In railway construction, the Winkler foundation model can be envisioned as an infinitely long beam resting on an
elastic foundation - Timoshenko's model of a rod in elastic confinement. The beam represents the rail,
characterized by bending stiffness, while the elastic foundation represents the subgrade, expressed by stiffness .
The rail is subjected to a stationary wheel force O at a given location x. The response to this load manifests as both
rail deflection and subgrade compression. This is an analytical, statically indeterminate problem, meaning there
are more unknowns than the number of equilibrium equations available. Therefore, deformation conditions must
also be used. The solution involves determining equilibrium equations and using the bending equation. In railway
construction, Timoshenko's model is also referred to as the Zimmermann model. The solution is derived from the
differential equation (1) [1], [6].
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where ET is the flexural rigidity of the rail in Nm?, w(x) is the vertical deflection in m, x is the horizontal coordinate
in m, and & is the Winkler modulus of the elastic foundation in N/m?, and parameter £ describes the stiffness of the
subgrade.

Pasternak foundation model

The Winkler foundation model does not account for the shear cohesion of the soil. The foundation deforms only
in the area directly under the load, without forming a deflection basin. As a result, it is not possible to determine
the extent of the effects on surrounding structures [3]. In railway construction, which Timoshenko studied, the
continuity of deformations due to track loading is ensured by the stiffness of the track structure, which rests on the
subgrade. Timoshenko likely did not see a need to introduce assumptions that would enforce interconnection
between soil points [1]. Another consequence of the absence of shear interaction is that the predicted deflection is
greater than what actually occurs [2]. The Pasternak foundation model, which is derived from the Winkler model
by introducing a shear interaction term within the soil, addresses some of the aforementioned limitations and
provides a more accurate representation of the behaviour of the soil medium under loading [3]. The model
considers an infinitely long rail subjected to a wheel force Q. The rail is characterized by bending stiffness ET and
is rigidly connected to a shear element, which deforms only under the influence of transverse shear forces. This
shear element is placed on an elastic foundation, representing the subgrade. The solution process is similar to that
of the Timoshenko model. Due to the number of unknowns exceeding the number of equilibrium equations, the
bending equation must be employed [1], [S]. The solution is derived from the differential equation (2).
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where EI is the flexural rigidity of the rail in Nm?, w(x) is the vertical deflection in m, x is the horizontal coordinate
in m, k is the Winkler modulus, which represents the stiffness of the subgrade, in N/m?, and G4 is the shear stiffness
of the foundation in N/m.

Static system of a two-layer model

The two-layer system model refines the Timoshenko (Zimmermann) model by extending an additional layer. This
enhancement enables the investigation of rail pads’ behaviour or the assessment of the subgrade. The first layer of
the model can be interpreted, as in previous models, as an infinitely long rail. The second layer represents the rail
supports, which may consist of transverse sleepers or a fixed track system [5]. The solution is derived from the
differential equation (3) and equation (4).

d*wy (x) 3 A3)
ElL '7 + ko wy () —wp ()] =0
Elz'd:—;fw"‘(lﬁ+k2)'W2(x)_k1'W1(x)=0 )

where EI| and EI, are the flexural rigidities of the first and second layers in Nm?, specifically, while EI; describes
the bending behaviour of the rail, EL: is typically small and captures the residual flexibility of the sleeper layer,
wi(x,¢) and wa(x, 1) are the vertical deflections of the first and second layers in m, k1 and k, are the elastic coefficients
in N/m?, specifically the stiffness k: reflects the elasticity of rail fasteners, and k: represents the deformability of
the subgrade, and finally x is the horizontal coordinate in m.

Dynamic models

Fryba model (Timoshenko model for a dynamic system)

The Fryba model is based on the Timoshenko (Zimmermann) concept of a beam on a Winkler elastic foundation,
but it differs by incorporating a moving load, whose effects induce a dynamic response. Fryba included the
influence of inertia and damping in the model. As a result, the infinitely long rail is characterized both by its
bending stiffness £7 and its mass m [7]. The solution is derived from the differential equation (5).
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where E1 is the flexural rigidity of the rail in Nm?, w(x, ) is the vertical deflection in m, x is the horizontal coordinate
inm, ¢ is the time in s, m is the mass per unit length of the rail in kg/m, c is the damping coefficient (reflects energy
dissipation in the track system) in Ns/m?, k is the Winkler modulus in N/m? and describes the stiffness of the
subgrade.

Pasternak foundation model — dynamic system

The model was developed by extending Fryba’s calculation with an element that transfers shear loading. It thus
represents a Pasternak foundation model subjected to a moving force [5]. The solution is derived from the
differential equation (6).
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where ETis the flexural rigidity of the rail in Nm?2, w(x; #) is the vertical deflection in m, x is the horizontal coordinate
inm, ¢is the time in s, m is the mass per unit length of the rail in kg/m, c is the damping coefficient (reflects energy
dissipation in the track system) in Ns/m?, k is the Winkler modulus in N/m? and describes the stiffness of the
subgrade, G4 is the shear stiffness of the foundation in N/m.

Two-layer system — dynamic system, Winkler foundation model

This model is based on the previously mentioned two-layer system model, but it differs by considering the moving
nature of the applied load [5]. The solution is derived from the differential equation (7) and equation (8).
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where EI, and EL are the flexural rigidities of the first and second layers in Nm?, specifically, while EI; describes
the bending behaviour of the rail, EL: is typically small and captures the residual flexibility of the sleeper layer,
wi(x,t) and wa(x,t) are the vertical deflections of the first and second layers in m, m; is mass per unit length of the
upper layer (rail + fasteners) in kg/m, m; is mass per unit length of the lower layer (sleepers or underlying mass)
in kg/m, ¢; is damping coefficient between upper and lower layer (fastener damping) in Ns/m? and ¢; is damping
coefficient of the subgrade in Ns/m?, k; and k» are the elastic coefficients in N/m?, specifically the stiffness ki
reflects the elasticity of rail fasteners, and k. represents the deformability of the subgrade, ¢ is the time in s, and
finally x is the horizontal coordinate in m.

Two-layer system — dynamic system, Pasternak foundation model

This model builds on the previous two-layer dynamic system. In addition to the effects of moving loads, shear
interaction is also considered. The fundamental assumptions of an infinitely long beam on an elastic foundation
remain valid [5]. The solution is derived from the differential equation (9) and equation (10).
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where EI; and EI, are the flexural rigidities of the first and second layers in Nm?, specifically, while El; describes
the bending behaviour of the rail, El is typically small and captures the residual flexibility of the sleeper layer,
wi(x,¢) and wa(x,t) is the vertical deflections of the first and second layers in m, m; is mass per unit length of the
upper layer (rail + fasteners) in kg/m, m; is mass per unit length of the lower layer (sleepers or underlying mass)
in kg/m, ¢; is damping coefficient between upper and lower layer (fastener damping) in Ns/m? and c; is damping
coefficient of the subgrade in Ns/m?, ki and k, are the elastic coefficients in N/m?, specifically the stiffness &
reflects the elasticity of rail fasteners, and k- represents the deformability of the subgrade, GA is the shear stiffness
of the second layer in N/m and ¢ is the time in s, and finally x is the horizontal coordinate in m.

3 RESULTS

The following Tab. 1 is derived from the methodology and summarizes the components of the individual models.

Tab. 1 Components of individual models.

Model Bending Shear Dynamics Number of
layers
Timoshenko (Zimmermann) Yes No No 1
Pasternak Yes Yes No 1
Static two-layer model Yes No No 2
Fryba Yes No Yes 1
Pasternak — dynamic system Yes Yes Yes 1
Two-layer dynamic model Yes No Yes 2
Two-layer dynamic model with shear Yes Yes Yes 2

The following Tab. 2 summarizes examples of possible analytical solutions [1], [5], [8]. For solutions that lead to
partial differential equations (PDEs) or ordinary differential equations (ODEs), the number of equations and
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unknowns remaining at the final stage of the calculation is provided in more detail [5]. The description of
individual models is derived from the methodology and the complexity of the solution.

Tab. 2 Comparison of individual analytical models.

Examples of

Model analytical solutions ODE/PDE Description
The ODE solution consists of
Timoshenko ODE 4 equations Wlth 4 unknowns, Ba.sw Vehlcle.—track model,
. some of which drop out after simple solution, fast and
(Zimmermann) . ... .
applying boundary conditions. accessible results.
The ODE solution consists of ~ Vehicle—track model with shear
ODE 4 equations with 4 unknowns, interaction. One of the simpler
Pasternak . . . .
some of which drop out after solutions is relatively fast and
applying boundary conditions. accessible results.
Vehicle—track model with an
Static two- ODE svstem The ODE solution consists of additional layer, without
layer model ¥ 4 equations with 4 unknowns.  considering shear. More complex
calculation.
PDE The PDE soluti fi .
. S e so.utl(.)n after Vehicle—track model
, Method of variable  variable separation is a system . . .
Fryba . . . . incorporating dynamics. More
separation Fourier of 4 equations with 4 .
complex calculation.
transform Laplace unknowns.
transform
PDE The PDE solution after Vehicle—track model
Pasternak — . . . . . .
dvnamic Method of variable  variable separation results in a incorporating shear and
y separation Fourier system of 4 equations with 4 dynamics. More complex
system .
transform Laplace unknowns. calculation.
transform
PDE system The PDE solution after Vehicle—track model
Two-layer Method of variable decomposition into incorporating an additional layer

dynamic model

separation Fourier
transform Laplace

characteristic roots results in 8
equations with 8 unknowns.

and dynamic behaviour.
Complex calculation.

transform
The PDE solution after Vehicle-track model
PDE system e . . .

Two-layer . decomposition into incorporating shear, an additional

. Fourier transform .. . . .

dynamic model characteristic roots results in 8 layer, and dynamic behaviour.
. Laplace transform . . .
with shear equations with 8 unknowns. Complex calculation.

4 DISCUSSION

The analytical solution of each beam model depends on the complexity of their differential equations. These
equations may include various components such as bending, shear, damping, and inertia, or be expressed with
multiple layers and time dependency.
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The simplest models, such as the Timoshenko model or the Pasternak foundation model, naturally lead to solutions
using ordinary differential equations (ODEs). Their results can be obtained relatively quickly, even without
computational software. Both models are suitable for obtaining initial estimates before using more complex models
or for calculating track deflection for slow-moving railway vehicles, where dynamic effects do not play
a significant role. The Pasternak foundation model additionally considers shear interaction, providing a more
realistic representation of track behaviour. Although computationally more demanding than the Winkler model, it
can still be solved without computational software by applying an appropriate substitution.

The static two-layer system extends the Timoshenko model by adding a second layer, which can represent rail
supports, such as sleepers. By considering two interacting layers, this model more accurately captures force
transmission between the rail and subgrade, making it a closer approximation of reality compared to the
Timoshenko model, where the subgrade is modelled as independent springs. This approach allows for an
assessment of sleeper distribution effects on track deflection, which is logically absent in the Timoshenko model.
However, for higher-speed railway vehicles, it is necessary to include dynamic behaviour, as a purely static
approach may not provide sufficiently accurate results. Additionally, this model neglects shear interaction, which
could affect deformation accuracy.

The Fryba model extends the original beam model by incorporating dynamic behaviour and time dependency. The
Fryba beam problem can be formulated as a partial differential equation (PDE) to determine the instantaneous
response to loading. Even when applying simplified boundary conditions, this remains a complex, asymmetric
problem, which may require numerical solutions for more complicated cases. The Fryba model is also useful for
frequency response analysis, and it can be solved using Laplace and Fourier transforms. However, these
transformations shift the problem to the frequency domain, meaning they do not directly provide track deflection
results, but rather offer insights into how the rail responds to different loading frequencies (Fourier transform) or
how it reacts to an impulse (Laplace transform).

The Pasternak foundation model with dynamic behaviour can be considered an equivalent of the Timoshenko
model but without the rotational inertia of the cross-section. Like the Fryba model, it can be analysed using Fourier
and Laplace transforms, allowing for frequency domain analysis as described earlier. The standard approach for
determining track deflection over time involves solving a partial differential equation (PDE), which is
computationally demanding due to the inclusion of both dynamic effects and shear deformation. However, this
provides a more realistic representation of track behaviour under loading, obtaining more accurate results
compared to basic models.

The most computationally demanding, yet also the most accurate models, are the two-layer dynamic model and
its extended version with shear interaction. Solving the partial differential equations (PDEs) results in a system of
eight equations with eight unknowns, which may require computational software. Like previous models, Laplace
and Fourier transforms can be used for analysis, but they do not provide a direct solution for instantaneous track
deflection. Instead, they enable an examination of the rail’s response to load in the frequency domain.

It is important to emphasize that the computational complexity of these analytical models differs fundamentally
from that of numerical methods. Since the models are based on differential equations, the primary challenge lies
in the correct formulation and transformation of these equations rather than in solving them computationally. Once
the equations are determined and can be implemented in a MATLAB environment, the solution itself can often be
obtained within a few seconds. Most of the time required is thus spent on setting up the model, particularly in the
case of more complex dynamic or multilayer systems. Once automated, the computational process becomes very
efficient, making analytical modelling well-suited for practical use.

Practical examples of applying analytical models can be found in both the study by Kulich and Plasek (2022) and
the diploma thesis by Kulich (2017), both of which are based on measurements conducted on the railway track in
Plana nad Luznici. The superstructure at the site consists of 60 E1 rails, W14 fastening systems, and B 91S/1
concrete sleepers.

In the aforementioned article, a two-layer dynamic model with Pasternak foundation was used for reverse analysis
- that is, for the back-calculation of model input parameters to match the measured rail deflection under a passing
passenger train. The observed rail deflection was approximately 0.6 mm, and the optimized model captured the
deformation shape very well [9].

In the diploma thesis, several analytical track models were compared under the load of a two-axle bogie of
a traction vehicle travelling at a speed of 77 km/h. The measured deflections ranged between 0.9 and 1.0 mm.
Among the simpler models, the Fryba model showed the best agreement with the measurements. However, the
most accurate results were provided by the two-layer dynamic model with a moving load and shear interaction.
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This model successfully captured both the peak deflection and the deformation behaviour between axles. These
examples confirm that analytical models—when properly set up and calibrated—can realistically represent the
behaviour of railway structures in practice [5].

S CONCLUSION

The article discussed various analytical models for railway track deflection, evaluating their advantages and
limitations, and highlighting their suitability for different scenarios. Contact models are representative of the
vehicle—rail interaction and are more appropriate for determining track deflection under railway vehicle loading.

Advanced models that incorporate dynamic behaviour provide a more realistic representation of railway track
behaviour under moving loads compared to static contact models.

Future research could focus on numerical models, the combination of analytical and numerical approaches, as well
as integrating computational models with experimental data and machine learning or using experimental data
combined with machine learning to enhance the prediction of structural response to loading.

From a practical perspective, the choice of a specific analytical model depends on the design stage, the expected
train speed, and the required level of detail in the structural response assessment. The Timoshenko and Pasternak
models are suitable for designing tracks with lower operational speeds or in sections where dynamic effects can
be neglected. The static two-layer model provides a better understanding of the interaction between the rail and
the sleepers and is therefore appropriate for designs involving fastener behaviour or sleeper spacing. For high-
speed lines or transition zones, it is necessary to employ dynamic models, such as the Fryba model or dynamic
variants of the Pasternak model, which account for inertial and damping effects. The most complex models, such
as two-layer dynamic systems with shear interaction, are better suited for detailed analyses and research purposes,
where accuracy is prioritized over simplicity.
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