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Abstract 
In relation to the rapid development of artificial intelligence, the possibilities of automatic processing of spatial 
data are increasing. Scanned topographical maps are a valued source of historical information. Neural networks 
allow us to extract information quickly and efficiently from such data, eliminating the difficult and repetitive 
work that would otherwise have to be done by a human. The article presents two case studies exploring the 
possibilities of using deep learning in historical geography. The first one is concerned with detecting and 
extracting swamps from topographic maps, while the second one attempts to automatically vectorize contours 
from the State Map 1 : 5 000. 
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1 INTRODUCTION 

Scanned topographical maps are an important source of information about various spatial phenomena, including 
land use and land cover, altitude, historic human settlements, and many more. These maps were created before 
the onset of GIS, and they are mostly available as physical printed assets. These can be scanned to a raster form. 
It is generally desirable to generate vector features for further processing. Features are generally manually traced 
in point, line and polygon form, and associated with corresponding legend description based on their attributes. 

Although previous research has explored utilization of deep learning in remote sensing field extensively, 
a comprehensive review of the available literature indicates a noticeable scarcity of studies dedicated to the 
extraction of information from topographic maps and other cartographic representations. Indeed, the application 
of machine learning (ML) or deep learning (DL) techniques for the extraction of features from topographic maps 
remains relatively underrepresented in current research. 

In their research, Li et al. [1] delved into the realm of text recognition on topographic maps using deep 
learning (DL). Simultaneously, Uhl et al. [2] investigated the utilization of convolutional neural networks 
(CNNs) for the extraction of human settlements. Lui et al. [3] explored the application of CNNs for the broad 
segmentation of topographic maps. Maxwell et al. [4] used a modified UNet neural network to delineate surface 
mine extents from topographic maps. Vectorization attempts of old cadastral maps with various edge detectors 
were conducted by Chen et al. [5]. An extensive thesis was written by Petitpierre [6] about semantic 
segmentation of historical city maps. Symbol extraction of fixed size along with coarse segmentation of regions 
indicated by them was explored by Smith and Pillat [7] using a modified YOLO neural network. Dolejš et al. [8] 
exploited precise digital terrain model (DMR5G) to detect aerial bombing craters with CNN method. 

In this paper, we present two case studies based on and furthering the listed research. The first case study 
describes the detection and delineation of swamps on historic TM10 maps by using unorthodox object detection 
solution, instead of conventional semantic segmentation, due to the peculiar nature of swamps signs on these 
maps. Swamps are illustrated as horizontal blue lines on various backgrounds. Areas of land use and land cover 
(LULC) are usually extracted by semantic segmentation, even in historical maps, if the classes have distinct 
spectral characteristics [9]. In this case however, this approach was replaced by object detection, namely SSD 
(Single-Shot Detector) neural network. 

The second case study concerns automatic vectorization of elevation contours from SMO-5 maps using deep 
edge filtering. Aside from manual vectorization, attempts at semi-automatic vectorization were made by 
Kratochvílová et al. [10] on the same maps. The SMO-5 maps were converted the SMO-5 raster map to a binary 
space, only distinguishing contours and background. Small groups of connected pixels were then erased and 
contours were vectorized in ESRI ArcScan. This approach certainly increased automation a lot, but much of 
manual cleaning and correcting of problematic places was still required. Moreover, annotations of contours 
created many gaps in the final vector layer, which had to be dealt with (using ETGeoWizards software), and the 
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height of the contour had to be added manually to the attribute. This reconstructed elevation model was used in 
the pre-dam valley reconstruction of the Vltava river [11], where accuracy of the approach and the existence of 
other applicable maps was discussed. Methods based on deep learning should further increase the automation. 
Based on the research by Chen et al. [5], numerous deep edge filters were trained to semantically segment the 
contours. The three neural networks trained were HED (Holistically Edge Detector), BDCN (Bi-Directional 
Cascade Network for Perceptual Edge Detection), and UNet, named after its characteristic U shape. 

2 METHODOLOGY 

ArcGIS Pro, which was used throughout the entirety of the process, supports various deep learning libraries like 
TensorFlow, PyTorch, cuDNN and others. These libraries are integrated into ArcGIS Pro interface and Python 
API. The general workflow for deep learning detection in ArcGIS Pro is as follows : collecting training 
samples, exporting them in a suitable format, training a deep learning model, and applying the model to new data 
for detection. 

Swamp detection 

TM10 topographic military maps in 1 : 10,000 scale were initially created between 1957 and 1971, spanning the 
entire territory of the Czech Republic. Their content includes land cover, elevation contours, watercourses and 
water surfaces, human settlements, important landmarks, and others. As depicted in Fig. 1, swamps are 
illustrated with blue horizontal lines. These are to be automatically detected and delineated in polygons for an 
environmental analysis. 

 

Fig. 1 An excerpt of TM10 maps with abundant swamp signs. 

To prepare the maps for further work, it is necessary to place the individual rasters in a coordinate system. 
Aside from České Švýcarsko, which is the area of interest, two other similarly large areas were selected to serve 
as a source of training data. These are described in Tab. 1. The two training areas were chosen specifically 
because of highly occurrent swamps. 

Tab. 1 TM10 areas used for training and evaluation of the model. 

 N. of map sheets Swamp area [km2] Area [km2] Pct. of swamps [%] 

Třeboňsko 32 16.9 677.2 2.5 
Podyjí 15 6.7 318.9 2.1 

České Švýcarsko 33 6.8 671.7 1.0 
 
The rasters were referenced using Projective Transformation Method in ArcGIS Pro, with corners of the 

map sheets serving as identical points. The rasters were then mosaicked to eliminate parts of maps beyond the 
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frame. The raster mosaic dataset could be used for the vectorization, but ArcGIS Pro usually crashes with such 
a big mosaic. Therefore the three mosaics were exported as three big seamless rasters. 

The swamps were manually delineated on the training rasters. This polygon layer then served to export 
image chips to train the model. The size of the image chips was determined based on the average length of 
a swamp line. The chip size was chosen 30 × 30 pixels, representing an area of about 32.5 × 32.5 meters. 
Because we want to detect only one type of symbol, no other class was defined. A similar process would work 
with any other map symbol, most likely with better success in the case of scale and rotation invariant symbols. 
In our case, there are differences in spacing, length, and shade of blue lines between various samples. Because of 
the variance, relatively big amount of samples is required. The swamps are always horizontal, which makes 
rotating the chips for data augmentation irrelevant. Augmentation was done with striding – chips were 
overlapped every 10 pixels, roughly tripling the the amount of chips in every dimension. Overall, around half 
a million chips were exported. 

The model was then trained, with 10% samples set aside for validation. ResNet-50 was used as the 
backbone. The training (process) took approximately 27 hours. 

Contour vectorization 

SMO-5 maps (Fig. 2) was published gradually from 1950 in various editions. The maps used here are the oldest 
available edition from the 1950s, without dams built in the following years. Their contents are less detailed than 
in the TM10 maps, consisting only of cadaster maps, altimetry contours and some miscellaneous content. The 
color scale is also poorer, with only three colors being used, black for planimetry, brown for altimetry, and beige 
for the background. The contours are spectrally distinct, regularly interrupted with height annotations. 

 

Fig. 2 A snippet of a SMO-5 first edition map. 

The contours from the previous Vltava project were used to generate the training data. From their line layer, 
a buffer zone of one meter wide on each side was created. These polygons were then rasterized and exported as 
500 × 500 pixel images with 50% stride and variable 180° rotation to augment the training set. For segmentation 
purposes, the training set always consists of a pair of images with the same reference: one original raster and the 
other a segmented binary bitmap (is contour/is not contour). This data was generated from 39 map sheets, 
resulting in 33,954 image chips in JPG format. 

Three neural networks were trained, namely HED (Holistically Edge Detector), BDCN (Bi-Directional 
Cascade Network for Perceptual Edge Detection), and UNET. Ten per cent of the training set was used for 
validation, VGG16 was used as the backbone model. The training took six hours in the case of HED, and 
44 hours in the case of BDCN. 

3 RESULTS 

After successful training, the inference took place. The models were put to use on new and unseen data; swamps 
were detected in the national park and contours were segmented on 22 new map sheets. 
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The inference on national park swamps took about 90 minutes. Every instance of a swamp was delineated 
with a bounding box. These boxes overlap, so it is possible to merge them into a polygon layer later, 
encompassing all the swamp area. 

  

Fig. 3 Succesfully detected swamps. 

In the case of contours, this process takes only about 10 minutes. At this point it is basically a semantic 
segmentation of the map. The BDCN model came out as the best one as it generalized very well on the new data 
and was able to cope even with contour annotations (Fig. 3 left). One of the problems was contours densely 
stacked side by side (Kratochvílová et al. [10] mentioned it too). The HED model performed significantly worse 
with large gaps. The UNET model performed well, but with gaps in unexpected places (Fig. 4 right). 

 

Fig. 4 Results of BDCN (left), HED (middle) and UNET (right) networks. 

4 DISCUSSION 

While both use-cases demonstrate a level of success, there are many things to be improved. 
Firstly, the swamp detection model indicates many false positives, mainly along watercourses spanning in 

east-west directions, mimicking the swamp appearance. The resulting polygons were limited by their probability 
to at least 90% to filter out most of them, but some remained. One of the possible causes of suboptimal 
performance is the percentage of false positive training chips, which were created from the edges of training 
polygons. Only later it was found that many of them do not contain any swamp signs at all. To optimize the 
algorithm further, it is suitable to explore other deep learning solutions. 

The result of contour edge detection is a segmented binary raster, similar to preceding research [10]. The 
binary raster can be converted to vector lines just like before, with some notable improvements. Above all else, 
the lines from the BDCN model are rarely interrupted, even in places of inserted annotations. This makes the 
vectorization procedure much easier and automatic. The connections of contours between map sheets are also 
smoother, even though not perfect. The binary raster can be thinned and converted to polylines. There are some 
resulting topological errors to be fixed. 
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5 CONCLUSION 

This article showcased the possibilities of deep learning uses in historical geography. The demonstrated ones 
include symbol detection and contour vectorization. The models were trained and applied with moderate success, 
encouraging future development. 

To automate the contour processing further, contours annotations are to be optically recognized and placed 
to the attribute of the newly created vector elements. This is a difficult task, as varying rotation introduces 
uncertainties such as ambiguity between 6 and 9. Along with variable contour interval (5-10-20 meters in 
different map sheets), this poses a challenge for a complete solution of automatic elevation model creation. 
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