
 

JUNIORSTAV 2024 
SECTION 04 

WATER MANAGEMENT AND WATER STRUCTURES 

 

 

DOI 10.13164/juniorstav.2024.24104 

DATA-DRIVEN APPROACHES FOR IMPROVED 

EVAPOTRANSPIRATION MODELLING WITH 

LIMITED DATA 

Barbora Považanová*,1, Milan Čistý1 

*barbora.povazanova@stuba.sk 
1Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 811 07 Bratislava, Slovakia 

Abstract  

This study uses data-driven methods to estimate FAO Penman-Monteith Reference Evapotranspiration (ETo) 
using only temperature data. Reference evapotranspiration, as an important variable for estimating actual 
evapotranspiration, is crucial in various water management tasks. However, some data for the Penman-Monteith 
equation is often unavailable. Thus, the need to use alternative methods emerges. The research shows DDM's 
effectiveness particularly when feature engineering was used. The study tested standard equations (Hargreaves 
Samani) and a proposed CatBOOST model with feature engineering to model ETo. The CatBOOST model 
achieved a higher R2 of 0.94 than the standard equations' R2 of 0.86. This result underscores DDM’s potential to 
refine evapotranspiration modelling for wide applications in water resource management, irrigation, and 
agriculture. 
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1 INTRODUCTION 

Evaporation of water plays a key role in the Earth's climate system and is critical to the planet's hydrological cycle. 
Water loss to the atmosphere is a complex process containing different types of evaporation and the evaporation 
of water from vegetation called transpiration. This compound process is collectively known as evapotranspiration. 
The accurate estimation of actual evapotranspiration, particularly in specific crop or landscape scenarios, is crucial 
for various applications, such as assessing the water balance in watersheds, drought threat analysis, crop water 
requirement estimation, and irrigation scheduling [1], [2]. Accurate measurement and comprehension of 
evapotranspiration processes are essential for the effective management of water resources and for addressing the 
challenges posed by changing climate patterns and agricultural demands. 

Reference evapotranspiration (ETo) represents a fundamental variable used to estimate actual 
evapotranspiration. The actual evapotranspiration (Eta) can be calculated as the reference evapotranspiration 
multiplied by the crop coefficient (Kc): 

��� �  �� � ��	  (1) 

where ETa is actual evapotranspiration (mm day-1), ETo reference evapotranspiration (mm day-1), Kc crop 
coefficient (-). 

The Kc, or crop coefficient, is specific to a particular crop and is typically established through empirical 
methods. Kc values encapsulate the cumulative influences of factors such as alterations in leaf area, plant height, 
crop attributes, the crop development stage, planting dates, canopy coverage density and extent, canopy resistance, 
soil conditions, as well as management practices. Each crop possesses a unique set of Kc values, allowing for the 
prediction of distinct water consumption across various crops and their growth stages [3]. Fig. 1 provides an 
illustration of a Kc curve concerning days or weeks following planting, illustrating the Kc values for initial, 
developmental, mid-season, and end-season phases. 

The construction of the crop coefficient curve requires only three key parameters: kcini, kcmid, and kcend. These 
values are available in published tables specific to various plant species. Reference evapotranspiration is specific 
to a given location and time, so it must always be calculated, not looked up in tables; therefore, this work focuses 
on this quantity. When applying the reference evapotranspiration calculation methods discussed in this study, 
along with these crop coefficient curve parameters (Eq. 1), it becomes feasible to compute actual 
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evapotranspiration of a particular crop in locations where the input data necessary for other calculation methods 
is limited, thus enabling a more efficient estimation process. 

 

Fig. 1 Changing values of crop coefficient across different plant development stages. 

The Food and Agriculture Organization (FAO) offers a widely employed method for ETo calculation, utilizing 
meteorological variables including temperature, humidity, wind speed, and solar radiation [4]. However, the 
availability of these meteorological data varies across regions, posing challenges to accurate ETo estimation. This 
issue is further complicated by the spatially inhomogeneous nature of evapotranspiration processes and various 
other factors. This problem can be effectively addressed through the application of data-driven techniques, also 
referred to interchangeably as machine learning methods within this study. 

Data-driven (DDM) or (interchangeably) machine learning (ML) algorithms, renowned for their capacity to 
model complex processes with limited physical or mathematical description, have emerged as a promising 
solution. DDM algorithms are suitable for identifying dependencies and correlations in the provided data. This 
study employs DDM to address the regression task, aiming to enhance the precision of ETo calculations while 
minimising requirements on historically measured input data. 

A growing body of research has explored the use of DDM to approximate ETo using fewer climatic variables 
as the conventional FAO methodology prescribes. Studies, such as that by Dimitriadou et al. [5], have applied 
multiple linear regression models to compute ETo with fewer climatic data, demonstrating effective input variable 
combinations. Ferreira and colleagues [6] calculated ETo by juxtaposing the FAO56-PM formula against random 
forest (RF) (ANN), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost). 
Their findings indicated that integrating the soft computing models with the FAO56-PM equation for ETo 
estimation yielded results comparable to utilizing each model independently. Notably, deep learning and tree-
based models have been leveraged for ETo estimation and other hydrological parameters in various studies, 
evaluated, for example, in Goyal et al.’s recent review [7]. 

Despite the growing body of literature on DDM techniques for ETo estimation, several questions remain. 
Theaim of this paper is to address two of them: 

• Comparing various standard models of ETo necessitate minimal measured data with ML algorithms. 
The accomplished comparative analysis aims to clarify the advantages of DDM or ML methods in 
relation to established empirical equations. 

• The advantages of feature engineering within DDM models, a facet that has received limited 
systematic exploration, were examined. Feature engineering involves transforming raw data into more 
sophisticated inputs, enhancing DDM’s performance. 

In the following sections, a comprehensive description and validation of the proposed method for ETo 
estimation using DDM is presented. The paper encompasses details about the case study, including the period of 
data used in the study measurements. Subsequently, the Methodology section elaborates on the approach to DDM 
techniques. The outcomes of our simulation studies, along with contrasts to existing ETo estimation techniques, 
are outlined in the Results section and elaborated upon in the Discussion segment. 
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2 DATA AND STUDY AREA 

The data used in this paper originates from the Košice station located in the eastern part of Slovakia, positioned at 
a longitude of 21.2167 and a latitude of 48.6667, with an elevation of 230 meters above sea level (Fig. 2). 

 

Fig. 2 Study area. 

All data were sourced from the ECA&D database [8], where they are freely available. In this study, data from 
1951 to 2020 was used. The variable under consideration in the modelling process was the reference 
evapotranspiration of the Košice station. Data used for the calculation of the FAO reference evapotranspiration 
included maximal and minimal daily temperature, relative humidity, cloud cover, global radiation, sunshine hours, 
and wind speed. Clear sky solar radiation was calculated using the R package FAO56 [9], as described in the 
Methodology section. A dataset comprising a total of 25,260 days with available data was utilized. The dataset 
was partitioned into training (also known as calibration) and testing sets, with a split ratio of 70:30. 

3 METHODOLOGY 

In this chapter, the authors provide a concise overview of the chosen empirical equations and data-driven 
techniques used in the paper. Readers are directed to the cited literature for detailed descriptions if they consider 
it necessary. 

Reference evapotranspiration by FAO Penman-Monteith formula 

As a benchmark method in this work, we utilize the FAO Penman-Monteith method, which is widely accepted by 
both scientific and practical communities. The equation for the FAO method, described in detail in [4], is as 
follows: 

��
 �
	. 408 � ∆ � ��� � �� � � �

900
� � 273

� �� � ��� � ���

∆ � � � �1 � 0.34 � ���
 (2) 

where ETo is reference evapotranspiration (mm day-1), ∆ slope vapour pressure curve (kPa °C-1), Rn net radiation 
at the crop surface (MJ m-2 day-1), G soil heat flux density (MJ m-2 d-1), γ psychrometric constant (kPa °C-1), T 
mean daily temperature in °C, u2 wind speed at 2m (km h-1), es saturation vapour pressure (kPa), and ea mean 
actual vapour pressure (kPa). 

Given the article's main goal – achieving precise ETo estimation with less measured data – just the models 
using fewer climatic quantities than the FAO equation [2] were examined. The selection of these methods was 
based on the initial accuracy assessments and findings from scientific literature [10]. 



 

JUNIORSTAV 2024 
SECTION 04 

WATER MANAGEMENT AND WATER STRUCTURES 

 

 

DOI 10.13164/juniorstav.2024.24104 

For this article, four empirical equations were selected: one temperature-based method, the Blaney-Criddle 
method [11] and three radiation-based methods: the Hargreaves-Samani method [12], the McGuinness-Bordne 
method [13] and the Makkink equation [14]. 

Data driven methods (DDM) 

The choice of DDM models evolved from more straightforward to more intricate models to determine the need 
for advanced approaches in this context. Well-known linear regression and its regularized variant, LASSO [15], 
were employed as simpler methods. Furthermore, the study integrated three diverse ML algorithm categories: 
random forest [16] as a representation of tree-based methods, support vector regression [17] for kernel techniques, 
and CatBOOST [18] for boosting methodologies. Ensemble stacking regression [19] was utilized to enhance the 
depth of the analysis, standing as the most advanced ML technique explored in this research. 

Feature engineering 

In data-driven modelling (DDM), input data can be represented as straightforward raw variables, e.g., temperature 
or wind speed. Yet, beyond these basic representations, the input data can be meticulously transformed into 
"features." These features are intricate derivatives of the original raw data, crafted to furnish a nuanced and refined 
description of the underlying problem. Such transformations frequently culminate in heightened performance 
metrics for data-driven models. In the present study, this facet was explored by proposing some strategies pertinent 
to Feature Engineering (FE), shedding light on its significance in optimizing modelling outcomes. 

Firstly, the pivotal raw variable for ETo computation, temperature, transforms to an approximate 
evapotranspiration value using the Hargraeves-Samani and McGuinness-Bordne equations. The temperature 
is also harnessed to compute the saturation vapour pressure, employing the Magnus-Tetens formula [20] without 
requiring additional variables. Additionally, a clear-sky solar radiation (Rso) is incorporated. Notably, Rso is also 
an integral component in the computation of the original FAO Penman-Monteith method [4], but it is based solely 
on latitude and elevation, i.e., no additional measured data are required. The authors deem the inclusion of this 
variable to be a substantial and noteworthy addition to their research, and as a result, they delve into a more 
comprehensive exploration of the calculation of clear sky solar radiation in the subsequent subsection. 

All the supplementary variables pertain exclusively to climatic data derived from temperature measurements 
and some easily obtainable information. All equations can be found in the referenced literature [4] and are easy to 
understand; only more complicated computation of the clear sky radiation is described below. A categorical 
variable for the month was also included in the calculation to account for seasonal variations in estimating 
evapotranspiration. 

Clear sky solar radiation 

Clear sky solar radiation refers to the amount of solar radiation that reaches the Earth's surface on a cloudless or 
perfectly clear day. It is an essential parameter in various fields, such as agriculture, meteorology, and solar energy, 
as it serves as a reference for understanding the potential solar energy available under ideal, clear sky conditions. 

The FAO56 methodology [4] provides a way to estimate clear sky solar radiation, (ET0). As can be seen from 
Equation 3, the Rso calculation includes variables that are available in most places (altitude, latitude). Relative 
inverse distance and solar declination use only Julian as an input variables and sunset hour angle uses latitude. The 
advantage of this variable is therefore its complete independence from the measured climatic variables. Another 
advantage is its adaptability for different areas, as it takes into account latitude and altitude. For this reason, clear-
sky solar radiation as an input feature was used in machine learning models. 

The first step in calculation of Rso is to first calculate extraterrestrial radiation (Ra) (3) and then the clear-sky 
solar radiation (Rso) (4) 

�� �  
12 � 60

"
� ��� � #$ � �cos�(� � cos�)� � sin�,�� � ,� sin�(� � sin�)� (3) 

��	 � �0,75 � 2 � �10/0� � 1� �� (4) 

 
Where Rso represents clear sky solar radiation (in MJ/m²·day-1), z denotes altitude above sea level (in meters), 
Ra stands for extraterrestrial radiation on a horizontal surface (in MJ/m²·day-1), Gsc is the solar constant 
(0.0820 MJ/m²·min-1), dr signifies relative inverse distance Earth-Sun (in radians), φ represents latitude 
(in radians), δ represents solar declination (in radians), ws stands for sunset hour angle (in radians). 



 

JUNIORSTAV 2024 
SECTION 04 

WATER MANAGEMENT AND WATER STRUCTURES 

 

 

DOI 10.13164/juniorstav.2024.24104 

4 RESULTS  

The authors juxtaposed daily reference evapotranspiration values derived from the FAO Penman-Monteith 
method, which serves as the benchmark approach, against those computed through: 

• Empirical equations including Blaney-Criddle, Hargreaves-Samani, Makkink, and McGuinness-Bordne. 
• Data-driven machine learning techniques encompassing multiple linear regression (MLR), LASSO for 

regularized form of linear regression, ranger aka random forest model (RF), CatBOOST, support vector 
regression (SVR), and stacking model (autoML). These methodologies were implemented using diverse input 
combinations for the sake of comprehensive evaluation. 

The comparison of results was evaluated based on three statistical characteristics: Percent Bias (PBIAS), 
Coefficient of Determination (R-squared or R2), and Root Mean Square Error (RMSE). These are common 
goodness-of-fit tests used in various fields, such as statistics, hydrology, and environmental modelling. 

Estimation of ETo using FAO PM and empirical equations 

The study conducted a comparison between ETo values determined using the widely accepted FAO Penman-
Monteith method, regarded as a standard approach, and evapotranspiration computations obtained according to 
various authors. These sources include models like Blaney-Criddle, Hargreaves-Samani, Makkink, and 
McGuinness-Bordne equations, as well as statistical and DDM models such as multiple linear regression (MLR), 
LASSO, support vector machine (SVR), CatBOOST, ranger, which is effective form of random forest (RF), and 
stacking models. Different combinations of input climate variables were employed with these techniques. 

Regarding the computation of ETo by the FAO methodology and the mentioned equations, the FAO Penman-
Monteith equation was considered the reference method for calculating ETo in this research. It was utilized 
to determine reference evapotranspiration for the Košice station on a daily basis from January 3, 1951, 
to April 30, 2020. These calculations were performed using the R programming language and the FAO56 and 
Evapotranspiration packages [20], [21]. The study's outcomes were then compared to those obtained from the FAO 
Penman-Monteith method, and the results are presented in Tab. 1. In addition to the goodness of fit statistics, the 
accuracy of the equations was also evaluated based on the number of negative values (negat. count) that are 
considered incorrect in the case of evapotranspiration. The optimal outcome was attained through the application 
of the Hargreaves-Samani equation. 

 

Tab. 1 Statistical evaluation of ETo computed by empirical equations (Tmin – minimal daily temperature, 
Tmax – maximal daily temperature, n – sunshine hours). 

Equation Variables Negat. count RMSE PBIAS % R2 

Hargreaves-Samani Tmax, Tmin 4 0.73 3.4 0.86 

Blaney-Criddle Tmax, Tmin 4 1.3 -29.8 0.84 

Makkink Tmax, Tmin, n 12 1.04 51 0.96 

McGuinness-Bordne Tmax, Tmin 1311 0.86 -6 0.86 

Estimation of ETo using data-driven methods  

The use of features, as opposed to originally measured data, represents a critical issue in enhancing the 
performance of machine learning models, yet it is frequently overlooked. This study assessed the impact of 
different feature utilization strategies on DDM’s models. Tab. 2 presents various DDM models that use only 
minimal and maximal daily temperatures, along with one feature drawn only from temperature. These derived 
data, referred to as features, encompass the transformation of temperature to rough evapotranspiration using the 
McGuiness-Bordne (MGB) and Hargreaves-Samani (HS) equations, as well as clear-sky solar radiation (Rso), and 
saturation vapor pressure (es). Furthermore, this study introduced a derived feature – a categorical variable 
identifying months – that is easily obtainable. Models displayed in Tab. 2 use temperature again as the only 
measured climate variable, identically to the empirical models presented in Tab. 1. 
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Tab. 2 Statistical evaluation of ETo by data-driven models (Tmax – maximal daily temperature, Tmin – minimal 
daily temperature, HS – evapotranspiration by the Hargreaves-Samani equation, MGB – evapotranspiration by 

McGuiness-Bordne equation, es – saturation vapour pressure, Rso – clear-sky solar radiation). 

Model 
no. 

Inputs model RMSE PBIAS % R2 

1 
Tmax, 

Tmin 

MLR 0.963 0.500 0.750 
LASSO 0.935 -0.400 0.760 

SVR 0.915 -2.100 0.770 
RF 0.915 -0.500 0.770 

CatBOOST 0.910 -0.600 0.770 
autoML 0.910 0.000 0.770 

2 
Tmax, 

Tmin, 

month 

MLR 0.606 0.300 0.900 
LASSO 0.522 -0.100 0.930 

SVR 0.518 -1.300 0.930 
RF 1.557 -0.400 0.790 

CatBOOST 0.522 -0.100 0.930 
autoML 0.520 -0.700 0.930 

3 
Tmax, 

Tmin, 

MGB 

MLR 0.604 -0.100 0.900 
LASSO 0.526 -0.200 0.930 

SVR 0.478 -0.600 0.940 
RF 0.484 -0.200 0.940 

CatBOOST 0.484 -0.100 0.940 
autoML 0.481 1.200 0.940 

4 
Tmax, 

Tmin, 

HS 

MLR 0.704 -0.500 0.870 
LASSO 0.636 -0.500 0.890 

SVR 0.471 -0.600 0.940 
RF 0.492 -0.100 0.940 

CatBOOST 0.485 -0.100 0.940 
autoML 0.478 -0.100 0.940 

5 
Tmax, 

Tmin, es 

MLR 0.942 -0.400 0.760 
LASSO 0.922 -0.700 0.770 

SVR 0.920 -2.100 0.780 
RF 0.919 -0.600 0.770 

CatBOOST 0.915 -0.600 0.780 
autoML 0.915 -1.200 0.780 

6 
Tmax, 

Tmin, 

Rso 

MLR 0.612 0.700 0.900 
LASSO 0.473 -0.200 0.940 

SVR 0.471 -0.600 0.940 
RF 0.475 -0.100 0.940 

CatBOOST 0.469 -0.200 0.940 
autoML 0.467 0.300 0.940 

 
As indicated in Tab. 2, which presents the primary findings of this study, the inclusion of features (FE) 

significantly enhances the model's performance when compared to the results in Tab. 1. In other words, models 
that use FE demonstrate a notable improvement in computing ETo compared to standard equations or machine 
learning (ML) techniques that do not incorporate FE. The most substantial enhancement is observed, especially 
when clear sky solar radiation (Rso) is added (model No. 6). This trend aligns with the results obtained from 
empirical methods, where the Hargreaves-Samani equation, which also employs a comparable supplemental 
variable, extraterrestrial radiation Ra, yields excellent results. 

Furthermore, the introduction of a simple categorical variable, "month" (model No. 2), substantially enhances 
results compared to model No. 1, which relies solely on raw temperature data. Additionally, favourable results are 
achieved by including approximate evapotranspiration values computed by the empirical equations MGB (model 
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No. 3) and HS (model No. 4). The least significant gain in precision of the model is observed by the addition of 
saturation vapor pressure (es). 

In summary, incorporating features consistently yields better results compared to using raw climate 
temperature data. The evaluation of different DDM models by statistical indicators also implies that autoML and 
CatBOOST models consistently deliver superior results. 

5 DISCUSSION 

The results of this study demonstrate the potential benefits of data-driven approaches in evapotranspiration 
modelling, particularly in situations where the use of the established FAO Penman-Monteith formula is limited by 
data availability or quality. Among the empirical equations, the Hargreaves-Samani model offers the most 
satisfactory results, which can be ascribed to the fact that extraterrestrial radiation is used in its calculation. 

The data-driven methods outperformed the traditional empirical equations [16], [17] in estimating reference 
evapotranspiration, highlighting the importance of alternative methods development when input data is absent [7]. 
The study also showed that incorporating additional features, such as categorical variables, can significantly 
enhance the performance of ML models. 

The introduction of a simple categorical feature, "month," substantially improved the results compared to other 
models that relied solely on raw temperature data. This finding is consistent with previous studies that have shown 
the importance of incorporating additional features to improve evapotranspiration modelling [15]. Furthermore, 
the study demonstrates the importance of thoughtful feature selection in improving model accuracy. The least 
significant improvement was observed when adding saturation vapor pressure (es) as a feature. The best results 
were obtained after introducing the variable Rso, clear sky solar radiation, calculated from altitude, latitude, and 
Julian day. 

This suggests that not all features are equally useful in improving model performance, and that features should 
be selected carefully, respecting the calculated variable. Accurate estimates of reference evapotranspiration are 
crucial for various water management tasks, such as irrigation design or crop water requirements. The improved 
accuracy of data-driven models has the potential to enhance the efficiency and sustainability of water resource 
management and agriculture. However, it is important to note that data-driven approaches are not without 
limitations. One of the main drawbacks of data-driven modelling is the risk of overfitting, where the model is too 
closely fitted to the training data and performs poorly on new data. To mitigate this risk, it is important to carefully 
evaluate model performance on independent validation data and to use appropriate regularization techniques. 

In summary, the results of this study provide evidence that data-driven approaches, specifically machine 
learning and data-driven methods, can improve the accuracy of reference evapotranspiration modelling. 
Incorporating additional features, such as categorical variables, can significantly enhance model performance. 
However, feature selection and engineering should be done thoughtfully, and appropriate regularization techniques 
should be used to mitigate the risk of overfitting. These findings have important implications for water resource 
management, irrigation, and agriculture, where accurate estimates of reference evapotranspiration are crucial for 
decision-making. 

6 CONCLUSIONS 

This research explores the application of data-driven methods, to enhance the computation of reference 
evapotranspiration (ETo) using the FAO Penman-Monteith method. The key innovation lies in the deliberate 
emphasis on temperature data, a readily accessible climate variable., This emphasis minimizes data input demands 
while strengthening it with engineered variables or features. To evaluate the effectiveness of this approach, the 
study aimed to surpass conventional methods like Hargreaves-Samani or Blaney-Criddle equations. Multiple data-
driven algorithms were employed for comparison. The results revealed CatBOOST and autoML as the most 
promising models, particularly when integrated with feature engineering in the ML modelling process. 
A noteworthy finding of this research was the importance of clear-sky solar radiation (Rso) as a valuable variable. 
Rso could be easily calculated using only latitude, altitude, and Julian day, making it adaptable across diverse 
geographical regions. This study underscores the significant impact of feature engineering on the performance of 
ML models, an aspect that had not been comprehensively explored in previous studies on this topic. While the 
models proposed by the authors demonstrated promise using data from a single climatic station, future research 
should verify their applicability across a wider range of climatic conditions. Furthermore, calibration of the models 
with data from more than one climatic station may lead to a model with broader applicability. In conclusion, 
presented study undescores the importance of incorporating feature engineering into DDM models to achieve 
precise ETo estimation. The prospect of improved predictions, decreased data input demands, and enhanced 
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efficiency offer considerable promise for optimizing various water management tasks, irrigation planning, and 
other decision-making in the agricultural sector. 
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