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Abstract 
Climate change poses a profound challenge, impacting ecosystems, human populations and water resources. 
Adapting water resources to the evolving hydro-climatological conditions within river basins is paramount. 
This study assesses the climate change effects in the catchment above the Vír I reservoir, located on the Svratka 
River in the Czech Republic, Central Europe. To account for the uncertainty of climate change, an ensemble 
approach was employed. Using insights from 13 global climate models (CMIP6, SSP2-4.5 scenario), temperature 
variations were analysed. The analysis aims to provide insights into temperature variations within this catchment 
area, shedding light on the complexities of climate change impacts and their implications for water resource 
management. 
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1 INTRODUCTION 

Climate change poses a profound challenge, affecting ecosystems, human populations and vital water resources 
worldwide [1]. The effects of climate change are observed in Central Europe where the extreme weather and its 
consequences occur more frequently [2]. Consequently, this change affects the water cycle which leads to a change 
in the hydrological conditions in the landscape [3]. In response to this challenge, it is essential to adapt water 
resource management strategies to the evolving hydro-climatological conditions within river basins. Central 
Europe, specifically the Czech Republic, is no exception to the far-reaching impacts of climate change. In this 
region, one of the prominent water bodies confronted with the impending shifts in temperatures and climate 
patterns is the Vír I reservoir, situated on the Svratka River. 

In order to address the multifaceted uncertainties related to climate change, an in-depth assessment of the 
temperature trends was undertaken within the catchment area above the Vír I reservoir. This study employs 
an ensemble approach, utilizing insights from 13 global climate models (GCMs) under the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) climatological projection, with a specific focus on the middle-range 
shared socioeconomic pathway scenario SSP2-4.5. Temperature represents a fundamental climatological variable 
of interest in this analysis, and it serves as a valuable indicator for understanding climate change impacts. The 
primary objective is to provide critical insights into the variations in temperature within this catchment area, 
shedding light on the complexities of climate change effects and their implications for water resource management. 

This study encompasses an examination of historical temperature data from 1980 to 2014 as well as modelled 
data projecting into the future, up to 2100. The analysis of these extensive datasets provides us with the means to 
examine temperature trends, seeking to understand the patterns of change, their significance, and their potential 
consequences. As the research in this study spans over distinct temporal windows, the temperature trends will be 
examined in near-term (2015–2040), mid-term (2041–2070) and long-term (2071–2100) periods. The results of 
these assessments, which will be delved into further, illustrate how temperature trends can significantly change 
even within different seasons. The insights derived from this research are essential not only for enhancing our 
understanding of the ongoing climatic shifts but also for supporting future strategies to adapt and mitigate the 
impacts of climate change, especially in the context of water resource management in the Czech Republic. As the 
ever-evolving climate challenges are being grappled with, the data and trends presented in this study are invaluable 
for our collective efforts to safeguard these vital resources. 

In the next phase of the investigation, attention will be turned to hydrological rainfall-runoff modelling, 
building upon foundations laid by the temperature trends analysis. This expanded analysis will aim to evaluate 
how climate-induced changes in temperatures impact hydrological processes, particularly in terms of precipitation 
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and runoff dynamics. By coupling this forthcoming research with temperature trend assessment, a more 
comprehensive understanding of the Vír I reservoir’s robustness in the face of climate change will be achieved. 

2 STUDY AREA 

The temperature trend assessment is presented on the Vír I reservoir’s catchment. The reservoir is situated on the 
Svratka river in the Czech Republic in Central Europe. This region was selected for many reasons. The Vír I 
reservoir is one of the main surface water resources in the South Moravian region and its catchment has a long 
history of climatological measurement. Moreover, some climate change analyses had been conducted on the 
reservoir regarding its water supply purpose [4], [5]. The catchment area is 366.8 km2. Fig. 1 shows the study area 
location with all the meteorological stations within and around the catchment. The temperature data were gathered 
from only three stations located on each side of the catchment, specifically the Svratouch, Nedvězí and Polička 
stations because all the other stations only measure precipitation. 

 

Fig. 1 Study area location with meteorological stations highlighted, Svratka River and Vír I reservoir. 

3 METHODS 

Data 

The daily temperature data were collected from three climatological stations within the study area, specifically the 
Svratouch, Polička and Nedvězí stations. The data were provided by the Czech Hydrometeorological Institute via 
their website (https://www.chmi.cz/historicka-data/). The length of observations was set at the range from 1980 to 
2014 to match the length of modelled historical data from the GCMs. The modelled historical and predicted 
temperature data were provided by the Lawrence Livermore National Laboratory via the database containing the 
World Climate Research Programme data for the CMIP6 (https://esgf-node.llnl.gov/projects/cmip6/). The 
modelled historical and predicted future data were obtained for a total of 13 GCMs (ACCESS-CM2, ACCESS-
ESM1-5, CMCC-ESM2, EC-Earth3, EC-Earth3-Veg-LR, GFDL-ESM4, IITM-ESM, INM-CM4-8, INM-CM5-0, 
MIROC6, MPI_ESM1-HR, MPI-ESM1-2-LR, NorESM2-MM). Only the data for the “middle-road” climate 
scenario (SSP2-4.5) were used. The variant label was “r1i1p1f1” for all the selected GCMs. 

Spatial downscaling 

A generally applied method to extract the station point data from the GCM’s output is to assign the variable a value 
represented by the grid cell in which the station is located [6]. This approach is adequate in the case of high-
resolution grids which are mostly seen in regional climate models because the grid cell size is relatively small. 
However, the GCM outputs used in this study are evaluated on a low-resolution grid, thus, the distance difference 
between two consecutive cells is large. Due to this, the cell value assignment mentioned above is not a valid 
approach because two relatively close stations can get assigned a different value, just because they were located 
on the border of two grid cells. Therefore, spatial interpolation of the point data from the GCM outputs is conducted 
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using the inverse distance weighting (IDW) method which averages point data based on the distance between the 
station and four closest grid cells. This method is proven to be easy yet effective in comparison to other existing 
approaches [7], [8]. 

The first step of the IDW is determining the distance from the point (station) in which the interpolated data are 
desired to the four nearest grid cells. However, since the GCM outputs are not in a simple rectangular projection 
but account for the Earth’s curvature, spherical coordinates had to be used in the distance evaluation. The distance 
D is calculated using the cosine equation [9] as follows (Eq. 1):  

 � � cos���cos 	� cos 	
 ∙ �cos � cos 
 � sin � sin 
� � sin 	� sin 	
� (1)

where [a1, b1] and [a2, b2] are latitude (a) and longitude (b) for the desired point and grid cell, respectively.  
In the next step, the weights for each of the four distances are calculated using Eq. 2. The closer the station is 

to the grid cell, the higher the weight which is determined by the inverse distance between these two points. 

 �� � 1��� �� 1���
�

��� ���
 (2)

where Wi is the weight of i-th grid cell with its distance Di and p is the power exponent determining the rate of 
weighting regarding the distances. Commonly, the exponent value is to be set to 1 which was used in this study as 
well. Finally, the interpolated data in the desired point (station) are evaluated as a sum of weighted data from the 
four nearest grid cells (Eq. 3). 

 �	�	�� ��!" � � �� ∙ �	�	#$%%,�
�

���  (3)

Bias correction 

GCMs’ outputs are often not representative of observed values but are systematically biased due to model 
conceptualisation. This bias has to be corrected [10], [11]. In this study, the linear scaling method was used in 
combination with the variance scaling method [12]. The method corrects modelled temperature data on a monthly 
basis using the monthly mean values and the monthly standard deviation values (Eq. 4). 

 '#!(� � )*'+#,, - � .)�'!/�, � 0 )*'+#,, -1 � 2�'!/�, �2*'+#,, - .'+#,� 0 )*'+#,, -1 (4)

where Tt is mean daily temperature in timestep t and it is in °C, )�∙� is mean monthly temperature in month m  and 
it is in °C and 2�∙� is standard deviation in month m and it is in °C for m = 1, …, 12. Subscripts “cor”,“gcm” and 
“obs” denote corrected, modelled (by GCM) and observed data, respectively. 

Trend analysis 

To examine the nature of the temperature trends and the significance level in the study area, the Mann-Kendall 
(MK) trend test and Sen’s slope estimate were employed. The MK trend test is a non-parametric test used to 
identify a trend in a series. The monotonic trend is determined to be either upward or downward. The MK test is 
commonly employed to detect monotonic trends in a series of environmental data [13].  

The null hypothesis (H0) shows no trend in the series and the data which come from an independent population 
are identically distributed. The alternative hypothesis (Ha) indicates that the data follow a monotonic trend. Firstly, 
the MK test statistic (S) is calculated as follows (Eq. 5 and 6):  

 4 � � � 567*89 0 8�-"
9��:�

"��
���  (5)

where 

 567*89 0 8�- � ; 1 <=> *89 0 8�- ? 00 <=> *89 0 8�- � 001 <=> *89 0 8�- A 0 (6)
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If S > 0, then the later observations in the time series tend to be larger than those that appear earlier in the time 
series, and it is an indicator of an increasing trend and vice versa (decreasing trend when S < 0). The mean of S 
equals 0 and the variance of S is given by Eq. (7. 

 2
 � 118 C7�7 0 1��27 � 5� 0 � �9��9 0 1��2�9 � 5��
9�� F (7)

where p is the number of the tied groups in the data set and tj is the number of data points in the j-th tied group. 
The statistic S is approximately normally distributed, provided that the following Z-transformation is employed 
(Eq. 8): 

 G �
⎩⎪⎨
⎪⎧4 0 1√2
 <=> 4 ? 00 <=> 4 � 04 � 1√2
 <=> 4 A 0 (8)

If the Z value is positive, then the trend is increasing while a negative Z value indicates a decreasing trend. 
Hamed [14] recommended that there will be a decrease or an increase in the S value when autocorrelation is 
positive or negative which is underestimated or overestimated by the original variance. Thus, if a trend analysis 
is conducted for this data using the MK trend test, it will show positive or negative trends when there is no trend. 
Hence, the modification of the MK test (MK’) proposed by [15] was used to remove all (lag-k) serial correlations 
in the time series of seasonal data. The modified procedure is in correcting the variance of the statistic S using 
a correction factor (CF) evaluated by the following equation (Eq. 9): 

 MN � 1 � 27�7 0 1��7 0 2� � �7 0 O��7 0 O 0 1��7 0 O 0 2�>PQ"��
P��  (9)

where rR
k
 is lag-ranked serial correlation and n is the total number of observations. 

The Sen’s slope estimator is another non-parametric test used to identify a trend in a series and what is more, 
it also shows the magnitude of the trend. The Sen’s slope estimate requires at least 10 values in a time series. This 
test computes both the slope (linear rate of change) and the intercepts according to Sen’s method [16]. It can be 
described as a linear model calculated as follows (Eq. 10): 

 <�8� � R8 � S (10)

where Q is the slope and B is the constant intercept. The set of linear slopes is calculated using Eq. 11. 

 R� � T9 0 TPU 0 O  (11)

where Q is the slope, X denotes the variable and j,k are indices where j > k for j= 1, 2, 3, …, N, where N is the 
number of data. The slope is estimated for each observation and the corresponding intercept is also the median of 
all intercepts. The median is computed from the N observation of the slope to estimate the Sen’s slope estimator. 
The positive slope Qi shows an increasing/upward trend whereas the negative slope Qi shows 
a decreasing/downward trend. 

4 RESULTS 

Firstly, the daily data were aggregated into seasonal averages which were analysed both separately and together 
in a series. The results for the ensemble of 13 GCMs were graphically tested to see if they can represent a historical 
period adequately. Fig. 2 depicts the minimum, mean and maximum ensemble temperatures in comparison to the 
observations for each season separately within the historical period 1980–2014. Fig. 2a shows the ensemble result 
for a winter season (DJF) where the observed temperatures ranged from –5.7 °C to +1.7 °C. The ensemble 
minimum and maximum values enveloped the observation although with a wider range (from –9.5 °C to 2.8 °C). 
The mean ensemble value closely corresponds to the observed values, the mean values do not show the same 
variance in comparison to the observations. It is worth noting that the variability within the ensemble is provided 
via each GCM simulation, although these details are not shown in Fig. 2 for clarity. Fig. 2b presents the spring 
season (MAM) where the observed temperature ranged from 4.1 °C to 9.2 °C. Once again, the ensemble data 
enveloped the observation within a wider interval (from 1.3 °C to 10.9 °C). This behaviour is also observed in the 
summer season (JJA; Fig. 2c) and the fall season (SON; Fig. 2d) where the observed and modelled temperature 
ranges from 14.1 °C to 18.7 °C and from 12.3 °C to 21.4 °C, respectively. Fig. 3 finally represents an aggregation 
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of all seasons together where the ensemble and observed seasonal mean values immensely align. Notably, an 
apparent increasing trend in this data can be observed, as highlighted in Fig. 2b, 2c and 3.  

 

Fig. 2 Mean temperatures during historical period (1980–2014) for: a – winter season (DJF); b – spring season 
(MAM); c – summer season (JJA); d – fall season (SON); black line – observations; blue line – ensemble mean; 

green dashed line – ensemble minimum; red dashed line – ensemble maximum. 

 

Fig. 3 Seasonal temperature over the entire historical period (1980–2014): black line – observations; blue line – 
ensemble mean. 

Tab. 1 presents the results of the trend analysis for each season separately as well as for all seasons together in 
the historical period defined as 1980–2014. Having analysed the observed data, an increasing trend is apparent in 
all seasons during this period . However, there is an exception in the DJF season where the trend is increasing yet 
statistically insignificant (at a significance level of alpha = 0.05). The ensemble mean, on the other hand, exhibited 
a statistically significant increasing trend during all seasons as well as across the entire seasonal period. It is worth 
noting that while the trend significance may not correspond between the observations and modelled data in DJF, 
the rate of increase (slope) is greatly similar. In fact, the slope is almost identical in all cases in the examined 
historical period, as presented in Tab. 1. This consistency suggests that the ensemble approach is representative of 
historical data. 
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Tab. 1 Trend analysis for each season during the historical period (1980–2014). Observed data and ensemble 
mean data are presented. 

Period 
Observed data  Ensemble mean data 

p-value Slope Trend Significant  p-value Slope Trend Significant 
DJF 0.629 0.02 increasing No  0.001 0.03 increasing Yes 

MAM 0.012 0.05 increasing Yes  0.000 0.05 increasing Yes 

JJA 0.000 0.06 increasing Yes  0.000 0.06 increasing Yes 

SON 0.023 0.04 increasing Yes  0.000 0.04 increasing Yes 

All 0.013 0.15 increasing Yes  0.001 0.14 increasing Yes 

 
However, although the ensemble mean is considered representative of the observations, the individual GCMs 

within the ensemble did not always yield uniform results. Among the ensemble models, there were variations in 
trend significance. Three out of 13 GCMs showed a statistically significant increasing trend during the DJF season 
while the results for other nine models aligned with the observed data. In the MAM season, half of the ensemble 
models showed an insignificant increasing trend while the other half exhibited a significant trend. The trend results 
for JJA were more consistent, with only one GCM showing an insignificant increasing trend, while the rest 
displayed significant trends. In the fall season, the entire ensemble displayed an increasing trend, but only five 
GCMs showed a significant trend. Considering the entire historical period, only three models differed from the 
results for the observed data, indicating an increasing yet statistically insignificant trend. 
While the historical analysis revealed notable variations in trend significance among the individual GCMs within 
the ensemble, the entire ensemble’s overall representation remained consistent. This continuity can be primarily 
attributed to the ensemble mean’s ability to faithfully mirror historical observations. This robust ensemble 
representation enables exploration of the shared upward trajectory in temperatures across the future periods. These 
future periods align with the CMIP6 framework, divided into near-term (2015–2040), mid-term (2041– 2070) and 
long-term (2071–2100) intervals. 

Fig. 4a presents both the overall and seasonal mean temperatures during the near-term period, alongside the 
historical values, to illustrate the observed changes. It is evident that the entire temperature range shifts upwards 
in all seasons. The smallest change in temperature was observed in the DJF and MAM seasons, with mean 
temperatures rising by 1.2 °C and 1.0 °C, respectively. The fall season follows with a 1.3 °C increase in mean 
temperature, while the largest change of 1.4 °C was observed in the JJA. In terms of minimum mean temperature, 
DJF and MAM remain the seasons with the smallest change, registering increases of 0.9 °C and 0.7 °C, 
respectively. Subsequently, the summer season showed an increase of 1.1 °C, followed by the fall season with 
a 1.3 °C increase in minimum mean temperature. Both the MAM and SON seasons exhibit the smallest change in 
the maximum mean temperature of 1.4 °C. The DJF season recorded a 1.7 °C increase, while the largest change 
in maximum mean temperature occurred in JJA with a 2.0 °C increase. The overall change in mean temperature, 
considering all aggregated seasons, is +1.3 °C with a 1.1 °C increase in minimum mean temperature and a 1.6 °C 
increase in maximum mean temperature. The season showing the most consistent change is the SON, with both 
minimum and mean temperatures increased by 1.3 °C and the maximum temperature increased by the nearly 
identical value of 1.4 °C. 
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Fig. 4 Seasonal temperature over the future periods: a – near-term period (2015–2040); b – mid-term period 
(2041–2070); c – long-term period (2071–2100); full lines – ensemble range during historical period; dashed 

lines – ensemble range during future periods. 

Building upon the near-term findings, Fig. 4b illustrates the temperature changes observed during the mid-term 
period. Once again, a temperature rise can be observed across all seasons. However, the distribution of the 
temperature change varies compared to the near-term period. The smallest increase of 1.8 °C was observed during 
the MAM season, closely followed by the SON season with a 1.9 °C increase. In contrast, the DJF season 
experienced a 2.1 °C increase and the largest change of +2.5 °C, consistent with the previous period, occurred in 
the JJA. Fig. 4b highlights the substantial upward shift in temperature, with the minimum mean temperature during 
the period 2041–2070 aligning closely with the historical mean temperature. Additionally, the historical maximum 
temperature corresponds to the mean temperature within this period.  

Lastly, the long-term period, spanning from 2071 to 2100, was analysed to see whether the temperature change 
trajectory continued over the extended future. The seasonal temperature within this period is depicted in Fig. 4c. 
It is clear that the temperature rise continued in this period during all seasons. However, the temperature rise was 
significantly smaller inter-periodically now than it was in between the near-term and mid-term periods. This 
indicates that the temperature rise is likely to slow down in the second half of the 21st century. Nevertheless, the 
temperature still rises. The largest increase is observed again in the summer season with a 3.1 °C increase. During 
both the DJF and SON seasons, the mean temperature rose by 2.6 °C. The MAM season again exhibited the 
smallest change of +2.3 °C in the mean temperature. 

While Fig. 4 visually represented the observed seasonal temperature changes, highlighting the continuous 
upward trend, the trend was further analysed and evaluated using the Mann-Kendall trend test. The test, 
accompanied by the Sen’s slope values, is presented in the following tables. 
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Tab. 2 displays the trend analysis results for the near-term period, encompassing the years 2015–2040. During 
this period, an increasing and statistically significant trend was observed for all seasons. It is worth mentioning 
that the slope remained unchanged for the DJF, MAM and SON seasons while for the JJA season it was half as 
much, compared to the historical period. This indicates that the rate of temperature rise during the summer season 
will be slower in the period 2015–2040, compared to the historical period. Consequently, the overall slope also 
decreased by 0.02 °C per season, declining from 0.14 °C per season to 0.12 °C per season. 

Tab. 2 Trend analysis for each season during the near-term period (2014–2040) using the ensemble mean values. 

Period 
Ensemble mean (Near-term period) 

p-value Slope Trend Significant 
DJF 0.031 0.03 Increasing Yes 

MAM 0.000 0.05 Increasing Yes 

JJA 0.000 0.03 Increasing Yes 

SON 0.000 0.04 Increasing Yes 

All 0.008 0.12 Increasing Yes 

 
As depicted in Fig. 4b, the temperature increased during the mid-term period in comparison to the historical 

period. Tab. 3 shows the results of the trend analysis and the actual differences in the increase of mean temperatures 
between the near-term and mid-term periods. The increasing trend was evaluated as a statistically significant 
increasing trend for all seasons. The rates of increase did not significantly change, regarding the near-term period, 
except for the MAM season where the slope declined from 0.05 °C per season to 0.02 °C per season. Another 
decline in the slope was observed during the SON season while during the JJA season the slope increased by 
0.01 °C per season. The slope for the DJF remained the same at 0.03 °C per season. These changes led to 
a significant decrease in slope for all periods which declined by 25% from 0.12 °C per season to 0.08 °C per 
season. The individual differences in the increases in comparison to the previous period correspond to the 
temperature changes in Fig. 4. The largest differences are observed in both mean and maximum temperatures 
during the summer season. The DJF season showed the largest differences in minimum temperatures of 1.4°C 
difference in the increase in temperature. This indicates that during the winter months, the lowest temperatures 
from the historical period are less likely to occur in the future due to a larger increase compared to mean and 
maximum temperatures. 

Tab. 3 Trend analysis for each season during the min-term period (2041–2070) using the ensemble mean values. 
The inter-period change is presented as well. 

Period 
Ensemble mean (Mid-term period)  Change in increase from previous period [°C] 

p-value Slope Trend Significant  ΔMin ΔMean ΔMax 
DJF 0.007 0.03 Increasing Yes  1.4 0.9 0.5 

MAM 0.007 0.02 Increasing Yes  1.2 0.8 0.9 

JJA 0.000 0.04 Increasing Yes  0.8 1.0 1.3 

SON 0.000 0.03 Increasing Yes  0.6 0.7 0.7 

All 0.006 0.08 Increasing Yes  1.0 0.8 0.9 

 
Fig. 4c shows that the temperature increased at a slower rate during the long-term period compared to the mid-

term period. This observation is further supported by Tab. 4 where the differences in increases from the previous 
period are notably smaller in the long-term period, compared to the more significant changes observed between 
the near-term and mid-term periods. In the mid-term period, minimum mean temperatures increased by an average 
of 0.6 °C to 1.4 °C compared to the near-term period. However, in the long-term period, this change significantly 
narrowed down the range to 0.2 °C to 0.4 °C. The rate of change also showed a reduction in mean temperatures, 
although the reduction was less noticeable in maximum mean temperature.  

For the DJF and SON seasons, the temperature change even increased in maximum mean temperatures. This 
indicates that while the overall temperature increase is slowing down, the likelihood of extreme temperatures 
occurring in the future remains a concern. Furthermore, the slowing of temperature increase is evident in the slope 
change as well. The slope remained consistent for the DJF, MAM and SON seasons but halved for the JJA season. 
A slight slope decline was also recorded in the all-season time series. 
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Tab. 4 Trend analysis for each season during the long-term period (2071–2100) using the ensemble mean values. 
The inter-period change is presented as well. 

Period 
Ensemble mean (Long-term period)  Change in increase from previous period [°C] 

p-value Slope Trend Significant  ΔMin ΔMean ΔMax 
DJF 0.005 0.03 Increasing Yes  0.3 0.5 0.6 

MAM 0.011 0.02 Increasing Yes  0.3 0.5 0.3 

JJA 0.019 0.02 Increasing Yes  0.4 0.7 1.1 

SON 0.000 0.03 Increasing Yes  0.2 0.7 1.0 

All 0.003 0.07 Increasing Yes  0.3 0.6 0.8 

5 DISCUSSION 

The results demonstrate a statistically significant increasing trend in temperatures throughout all seasons from 
2015 to 2100. The final average temperature increase of 2.7 °C during the long-term period (2071–2100) aligns 
with the projections from the “middle-road” SSP2-4.5 CMIP6 scenario [1]. This increase is compared to the 
historical period spanning from 1980 to 2014, which already exhibited an upward trend in temperatures, except 
for the winter season. It is worth noting that Brázdil et al. [17] argued that 30-year normal period defined from 
1991 to 2020 was already strongly influenced by recent climate change while the previous normal period from 
1961 to 1990 was more stable. This suggests that the temperature increases observed between future periods could 
be even more pronounced, considering the comparison with a historical period already impacted by climate 
change. Nevertheless, the overall significance of the increasing trend is in general agreement with the temperature 
results presented in AR6 (2022). 

6 CONCLUSION 

The future mean temperature projections were assessed using a multi-model ensemble approach with 13 CMIP 
GCMs above the Vír I reservoir’s catchment. The raw data underwent correction through linear scaling and 
variance scaling methods, leading to bias-corrected data for evaluation. The comparison of this corrected data with 
historical observations validated the suitability of the ensemble approach, revealing an acceptable envelope of 
values that represents the measured data. 

Based on these findings, the ensemble was employed to project future mean temperature in the catchment 
spanning from 2015 to 2100 and divided into near-term (2015–2040), mid-term (2041–2070) and long-term 
(2071–2100) intervals. Seasonal evaluations showed that the overall increasing trend did not progress uniformly 
across seasons, with the winter season maintaining a consistent rate of temperature increase throughout the entire 
period. Despite not exhibiting the highest overall increase, the winter season experienced the most significant rise 
in minimum mean temperatures, potentially impacting snowmelt patterns and the reservoir´s water management 
during the winter and spring seasons. 

Conversely, the summer season exhibited the largest temperature increases across all three periods, potentially 
affecting the reservoir´s management during the summer when water demand for irrigation is at its peak. The 
overall temperature increase is of concern due to its influence on evaporation rates which contribute significantly 
to the reservoir´s water losses. All in all, the results indicate a steady temperature increase which begins to slow 
down in the second half of the 21st century, aligning with the projections from the SSP2-4.5 CMIP6 scenario used 
in this study. Further investigation into these temperature trends and their implications on the reservoir’s water 
management will be conducted in future research as well as rainfall-runoff modelling in the reservoir’s catchment. 
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