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Abstract 
The contribution presents initial results obtained by employing a circular representative volume element (RVE) 
for the homogenization of a discrete model of concrete. Based on initial research, circular RVE might be 
a promising alternative to the classical square one (for 2D problems), especially considering its use in conjunction 
with periodic boundary conditions after strain localization in the material. The contribution shows the behaviour 
of the circular RVE in elastic loading and compares it to the results obtained by the usually used square RVE. 
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1 INTRODUCTION 

In recent years, discrete models have started to gain popularity because of their ability to naturally model the inner 
structure of heterogeneous materials. Such capabilities do not come without certain associated costs, such as 
increased computational demands [1]. 

To exploit the advantages of detailed physical models, a mathematical method called homogenization is often 
used (see an example of such an approach in Ref. [2]). It essentially allows the transformation of a computational 
scheme into a multiscale computational framework, so that detailed, computationally demanding models are used 
to substitute constitutive relations in the original framework. An example of the Finite Element Method (FEM) 
framework used on the macroscale complemented by a detailed mesoscale/microscale model attached at 
an integration point can be seen in Fig. 1. 

 

Fig. 1 Basic multiscale computational scheme. Figure of the discrete model has been generated by in-house 
software; other Figures were taken from [1]. 

The model used on the mesoscale/microscale level is referred to as the Representative Volume Element (RVE). 
It is a statistically representative sample of the material, significantly smaller than the macroscopic structure 
to which it is attached at each integration point of the meshed macroscale domain. In each step, the RVE is loaded 
by given strains and its response in the form of the stress tensor is calculated and returned to the macroscale [2]. 



 

JUNIORSTAV 2024 
SECTION 03 

STRUCTURAL AND TRANSPORT ENGINEERING 
 

 
DOI 10.13164/juniorstav.2024.24004 

Based on the response one can also compute effective macroscale material properties. Because the detailed model 
is not used for the whole macroscale structure, the calculations may be potentially significantly less demanding. 

Commonly, square (2D) or cubic (3D) RVE are being employed in elastic regimes. Extension to post-peak 
behaviour of heterogeneous materials have also been successfully implemented [3], [4], however, several 
problematic aspects which stem from the occurrence of a localization band. One of the suggested approaches 
potentially at least partially eliminating the problematic aspects is the use of a circular RVE seen in Refs. [5], [6]. 

The presented contribution forms part of an ongoing effort to formulate an RVE of a discrete mesoscale model 
of concrete (the Lattice Discrete Particle Model - LDPM [7]), which could later be used for homogenization 
in post-peak regime with localized strains as well. After the introduction of the RVE formulation, both square and 
circular RVEs were analysed and employed to determine effective elastic material parameters. Results obtained 
on the squared RVE served as a benchmark based on which the performance of the circular RVE was assessed. 

2 REPRESENTATIVE VOLUME ELEMENT 

A crucial stepping stone in formulating a multiscale computational scheme was the definition of the RVE along 
with the boundary conditions. Commonly, a square form of the RVE is used in connection with periodic boundary 
conditions (PBC), which have been shown to provide the most consistent results in terms of RVE stiffness [4]. In 
principle, the boundary conditions divide opposing surface nodes into two groups, positive and negative, and 
define the relationship between their displacements u+ and u-, and rotations θ+ and θ- with the help of a macroscale 
strain tensor εM and the difference between their positions x+ - x- as [6]: 

𝒖! = 𝒖" + 𝜀# . (𝒙! − 𝒙") (1) 

𝜽! = 𝜽" (2) 

On a square geometry, opposing node couples x+ and x- lie on the opposite sides of the square periodically. The 
constraint is thus applied in two directions. On a circular RVE, the constraint is also applied on opposing nodes, 
however, it is centrally symmetrical concerning the centre of the RVE. Both cases are shown in Fig. 2, on 
a geometry generated for the analysis described further on. A detailed account of the geometry formulation may 
be found in [2]. 

 

Fig. 2 Periodic boundary conditions applied by a constraint to opposing nodes. Red lines show the pairs 
of periodic nodes with degrees of freedom bound by equations (1) and (2). 

There is a clear difference visible from the two examples in terms of a boundary between the RVEs. The square 
RVE is formulated in a periodic manner where the periodicity is characterized by irregular boundaries so that 
the RVE may periodically fill the space of the media. In addition, such a boundary does not impose a wall effect 
[8], [9] by allowing for irregularity and thus mimicking elements crossing the boundary of a regular square. On 
the contrary, the circular RVE has a regular boundary. 

The regular boundary geometry has been chosen for the circular RVE because PBC may be applied only under 
the condition that there are opposing norms to the surface in the node couples: n+ = n- [5]. This may be achieved 
either by a regular boundary or by allowing opposing nodes to be disrupted by the same distance from the centre. 
Neither option offers the perfect periodicity which is achieved by square RVE so regular circular geometry has 
been chosen for the initial analysis. 

It should be noted that this issue is specific to the use of a discrete model. In continuous models, heterogeneities 
or cavities may be split to partly occur on opposite sides of the RVE so the boundary may be kept regular while 
maintaining no wall effect. 
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3 SQUARE AND CIRCULAR RVE COMPARISON 

The aim of the present analysis was to compare the performance and convergence of the circular RVE 
to the square one. The analysis was done in elastic regime only by numerically obtaining macroscale material 
parameters Young's modulus E and Poisson's ratio ν from the mesoscale RVE response for both square and circular 
RVE and comparing them. The present section describes the procedure in detail. Unless stated otherwise, variables 
were considered in the corresponding system of units. 

Both RVEs of LDPM geometry (specifics are described in Ref. [9]) are loaded by a strain tensor with one unit 
component either εxx, εyy or γxy. The strain is applied to RVEs of different sizes, while the criteria for the similarity 
between the square and the circular RVEs is the RVE area (not the number of elements or number of boundary 
nodes). RVEs of following areas were considered: A1 = 0.005 m2, A2 = 0.02 m2, A3 = 0.08 m2, A4 = 0.32 m2, 
A5 = 1.08 m2. 50 geometries were generated per area so that a representative amount of data was obtained. Each 
of the geometries was separately loaded by the unit strain so that corresponding stress was obtained (σxx, σyy and 
τxy per size and geometry). Subsequently, the stress obtained for different geometry realizations corresponding 
to the same area size was averaged and a numerical material matrix Mnum describing the response of a square or 
circular RVE of a certain area in all directions was assembled. Analytical material matrix Man(E, ν) (equation (3)) 
was obtained based on effective Young's modulus E and Poisson's ratio ν. 

Plane stress state was considered when assembling the matrix 

𝑴$%(𝐸, 𝜈) = &
'"(!

/
1 𝜈 0
𝜈 1 0
0 0 '"(

)

2. (3) 

An optimization algorithm was used to minimize an objective function Φ (equation (4)) by an open-source 
optimization module from the SciPy library [10] in order to obtain numerical macroscale parameters for each RVE 
size and geometry. 

𝜱 = 4
∑ ∑ 6𝑀𝒊,𝒋

𝒏𝒖𝒎 −𝑀𝒊,𝒋
𝒂𝒏8𝟐𝒋𝒊

∑ ∑ 6𝑀𝒊,𝒋
𝒏𝒖𝒎8𝟐𝒋𝒊

 (4) 

Results 

Fig. 3 and Fig. 4 summarize results obtained by the previously described analysis. Both macroscale parameters 
E and ν were compared for square and circular RVEs of different sizes. 50 geometry realizations were tested, 
hence each curve shows the mean and standard deviation of the obtained values. 

 

Fig. 3 Resulting Young’s modulus E obtained for various RVE sizes of both shapes. 

 

Fig. 4 Resulting Poisson’s ratio ν obtained for various RVE sizes of both shapes. 
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4 DISCUSSION 

Results show a certain discrepancy between the obtained values. In the case of Young's modulus E of the square 
RVE, the value clearly converges to E = 13.6 GPa. The mean value tends to differ only marginally for the smallest 
area, which is also characterized by the greatest standard deviation. On the contrary, the same quantity obtained 
from the circular RVE shows the finalmean value to be about E = 13.4 GPa, the difference is approximately 1.5%. 
It is worth noting that the mean value decreases with the increased area of the RVE which is caused by the wall 
effect due to regular boundary. As in the case of the square RVE, the standard deviation decreases with increased 
RVE area. 

It is presumed, that the final value for the circular RVE is converged (also given the small standard deviation) 
because the RVE reaches such size that the wall effect [9], [8] is no longer prominent. Although the circular RVE 
has a regular boundary and thus simulates being a sample by itself (wall effect is present), at the highest size it 
exhibits the same behaviour as if it was cut from a larger volume (no wall effect). It is worth noting that it is 
impossible to produce a perfectly periodic circular RVE so a certain substitution will be designed. 

The resulting Poisson's ratio which is displayed in Fig. 4 shows similar trends, only the mean value 
of ν obtained for circular RVE increases with increased RVE size. For both RVE shapes the standard deviation 
decreases with increased RVE area as expected. Poisson's coefficient of the square RVE converges 
to ν = 0.386 while for circular RVE the final value is ν = 0.395, the difference concerning the square RVE value 
being 2.3%. The difference concerning the square RVE’s characteristics may be considered significant since 
the response is expected to be the same. 

The opposing trend for both macroscale material characteristics in the circular RVE results suggests that 
the values tend to compensate for each other. Also, there are more surface node couples in the circular RVE than 
in the square RVE of the same area (see Fig. 2), restricting the RVE in multiple directions, possibly causing 
the compensation of a higher Poisson's coefficient which is compensated for by a lower modulus of elasticity. 

To confirm the hypothesis, a similar analysis will be run in the future with Poisson’s ratio set to 0. This should 
eliminate the supposedly compensating behaviour since the effect of lateral contraction will not be present at all, 
and the resulting values of Young’s modulus should be the same. 

5 CONCLUSIONS 

After introducing the general framework of multiscale simulations along with their benefits, the representative 
volume element has been introduced as the cornerstone of such computational schemes. Two types of RVEs have 
been defined: (i) a square RVE, commonly used for the purpose, and (ii) a circular RVE, introduced to potentially 
compensate for certain disadvantages of the square RVE in inelastic calculations. 

An analysis has been performed in order to assess the performance of the different RVE in comparison 
to  square one. Only the elastic regime was considered. RVEs of five different areas were considered while 
50 realizations were generated per area for each RVE shape. After obtaining the mesoscale (stress) response 
of the RVEs, an optimization algorithm was used to calculate macroscale material parameters. Finally, 
the macroscale parameters were compared. Differences in the results of the circular RVE to the square RV were 
observed. Possible causes for the discrepancy were discussed, however, further research will have to be conducted 
to draw conclusions. 
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