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Abstract 
This paper deals with the application of machine learning (ML) in the field of concrete technology. Two databases 
of test mortars and concretes were created from selected academic theses, which include mechanical properties 
in relation to their composition. These databases were used to develop two ML models that predict the mechanical 
properties of mortars and concretes depending on their composition. The mortar test database contains a total 
of 242 mechanical property records and the concrete test database contains 111 records. The materials in the 
database are CEM I, CEM II and CEM III cements combined with additives such as ground granulated blast 
furnace slag, high temperature fly ash and micro-ground limestone. 
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1 INTRODUCTION 

In recent years, the use of advanced computing technologies has become widespread, especially in solving 
complex optimization and engineering problems. This growth has been supported by the integration of machine 
learning (ML) techniques into various industries. For example, ML plays a key role in finance (investment 
forecasting and analysis), healthcare (diagnosis and treatment recommendation), and transportation (traffic 
monitoring and management). One such challenging problem is concrete mix design, a process that traditionally 
relies on the expertise of technologists, adherence to engineering standards, and the use of empirical relationships 
that are not commonly employed. The optimization problem lies in the selection of the appropriate material 
composition to achieve the desired properties of the concrete in both its fresh and hardened states [1]. 

Creating a machine learning model involves several key steps. The first step is data acquisition, where it is 
crucial to collect and prepare the data, including any necessary transformation. The data is then split into training 
and test sets, allowing the model to be validated on independent data. The actual training of the model is done 
using the training data to teach the model the patterns and relationships in the data. This is followed by validating 
and fine-tuning the model on the validation set to minimize overfitting and optimize parameters. Then, the model 
is tested on the test set, and its performance is evaluated using appropriate metrics such as RMSE or R2. 

If the model performs successfully, it can be used to make predictions on new data. An important step is to 
continuously monitor the performance of the model and maintain or update it as necessary to capture changes in 
the data or environment. 

ML models can be divided into supervised and unsupervised learning. 
In supervised learning, the learning system is provided with a set of examples where both input and output 

values or functions are given. The goal is to generate a hypothesis that can accurately predict the relationship 
between the input and output. 

In contrast, unsupervised learning involves a set of examples where only the inputs are known and no 
information about the correct output is given. 

The tasks performed by ML systems can be summarized as follows: 

• Classification (supervised ML algorithm): the goal of this step is to determine the category (or class) 
to which the input data belongs [2]. 

• Regression (supervised ML algorithm): the goal is to model the relationships between the inputs and 
the numerical outputs [2]. 

• Clustering (unsupervised ML algorithm): the goal is to identify hidden data patterns in two or more 
datasets [2]. 



 

JUNIORSTAV 2024 
SECTION 02 

BUILDING MATERIALS AND COMPONENTS 

 

 

DOI 10.13164/juniorstav.2024.24085 

This paper will use a regression task, i.e. supervised model learning. 
A large amount of data is already available in the field of concrete technology that could be used for innovations 

and improvements in the concrete industry. Despite this fact, there is a relatively low number of freely available 
databases in public repositories in this field. 

Prof. I-Cheng Yeh has compiled two concrete mix design databases licensed for unrestricted use, which can 
be used to create ML models to predict compressive strength and consistency [3], [4]. The most common form of 
these databases describes the composition of concrete in terms of cement content, water content, admixtures, 
additives, aggregates, and age of concrete which serve as input variables, followed by fresh and hardened 
properties, which serve as output variables. 

In the field of concrete technology, ML has already been used by many experts to predict various concrete 
properties, most commonly compressive strength, tensile strength, shear strength and modulus of elasticity. 
In terms of concrete type, special types of concrete such as high-strength concrete, self-compacting concrete, 
lightweight concrete are predominant [5], [6]. 

Völker C. and colleagues presented an open-source application using machine learning algorithms to inverse 
design and predict the properties of newly designed concrete formulations. This application aims to assess the 
carbon footprint and improve the quality of materials while considering socioeconomic factors in materials 
design [7]. 

2 METHODOLOGY 

Materials 

In this article, a database of test mortars according to [8] (hereinafter referred to as the mortar database) and 
a database of test concretes prepared in a laboratory environment (hereinafter referred to as the concrete database) 
using raw materials from the Czech and Slovak Republics will be used. 

Tab. 1 lists the materials used, indicating their origin, designation and occurrence in the mortar and concrete 
databases. 

Tab. 1 List of materials used in the mortar and concrete database. 

Name of material used Origin ID 
Concrete 
database 

Mortar 
database 

CEM I 42.5 R Mokrá, CZ CEM I Mokrá X X 

CEM II/A-LL 42.5 R Hranice, CZ CEM II Hranice  X 

CEM II/B-S 42.5 N Horné Srnie, SK CEM II Horné Srnie X X 

CEM III/A 42.5 N Hranice, CZ CEM III Hranice X X 

High-temperature coal fly ash Dětmarovice, CZ FA Dětmarovice  X 

High-temperature lignite fly ash Chvaletice, CZ FA Chvaletice  X 

High-temperature lignite fly ash Opatovice, CZ FA Opatovice X X 

Ground granulated blast furnace slag Štramberk, CZ GGBS Štramberk X X 

Ground granulated blast furnace slag Dětmarovice, CZ GGBS Dětmarovice  X 

Finely ground limestone Štramberk, CZ FGL Štramberk X X 

Fine aggregate 0/4 Žabčice, CZ 0/4 X  
Coarse aggregate 4/8 Žabčice, CZ 4/8 X  

Coarse aggregate 8/16 Olbramovice, CZ 8/16 X  
Naphthalene Formaldehyde 

Superplasticizer 
- Naphthalene  X 

 
Polycarboxylate Superplasticizer - Polycarboxylate X   

Data collection 

In this paper, a database of concretes and mortars will be used, which was compiled from the theses of the Faculty 
of Civil Engineering of BUT [9], [10]. 
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The mortar database was created by laboratory preparation of test mortars with a total dosage of 450 g of 
cement and admixtures with a constant water dosage of 225 ml. The cement replacement ratio with admixture 
ranged from 10% to 70%. Three prismatic test specimens of 40 × 40 × 160 mm were prepared each time (total 
mixing volume was therefore 256 ml) and stored in water in the laboratory environment. After reaching the 
required age of the specimens (usually 2, 7, 28, 60 and 90 days), the specimens were subjected to tensile flexural 
strength and compressive strength tests. 

Unlike the mortar data collection, the concrete database was compiled by laboratory preparation of concrete 
mix design with different proportions of binder, aggregate, and water. The replacement of cement by admixture 
ranged from 10 to 70%, similar to the mortars. Three 150 × 150 × 150 mm (in some cases 100 × 100 × 100 mm) 
cubic test specimens were prepared and placed in water in a laboratory environment. Compressive strength testing 
was usually carried out at 7, 28, 60 and 90 days. 

 

Mortar database overview 

The mortar database contains a total of 242 records. Tab. 2 gives an overview of this database. 

Tab. 2 Statistical values of mortar database. 

ID Unit Count Mean 
Standard 
deviation 

Min Max 

CEM I Mokrá g/256 ml 162 290.6 82.6 135 450 

CEM II Hranice g/256 ml 50 301.2 66.7 225 450 

CEM II Horné Srnie g/256 ml 15 303.6 116.9 135 450 

CEM III Hranice g/256 ml 15 296.9 109.6 135 450 

FA Dětmarovice g/256 ml 30 168.2 73.9 45 315 

FA Chvaletice g/256 ml 30 165.3 46.8 113 225 

FA Opatovice g/256 ml 46 170.4 71.1 45 315 

GGBS Štramberk g/256 ml 61 170.6 76.8 45 315 

GGBS Dětmarovice g/256 ml 15 165.3 47.6 113 315 

FGL Štramberk g/256 ml 31 172.9 80.7 45 315 

Specimen age day 242 37.6 30.2 2 90 

Compressive strength MPa 242 35.0 16.3 4.3 71.5 
1Flexural strength MPa 190 6.4 2.2 1.6 10.5 

Concrete database overview 

The concrete database contains a total of 111 records. Tab. 3 gives an overview of this database. 

Tab. 3 Statistical values of concrete database. 

ID Unit Count Mean 
Standard 
deviation 

Min Max 

CEM I Mokrá kg/m3 101 210.7 79.8 99.5 359.5 

CEM II Horné Srnie kg/m3 5 378.6 35.4 339.8 404.4 

CEM III Hranice kg/m3 5 391.7 37.1 351.0 418.8 

FA Opatovice kg/m3 28 132.5 60.2 34.2 232.1 

GGBS Štramberk kg/m3 32 143.1 66.9 34.3 239.1 

FGL Štramberk kg/m3 24 137.2 66.3 34.3 237.4 

0/4 kg/m3 111 858.7 23.4 826.0 935.9 

4/8 kg/m3 111 242.3 6.6 233.0 264.0 

 
1 Flexural strength was not used as an input variable in the development of the ML model. 



 

JUNIORSTAV 2024 
SECTION 02 

BUILDING MATERIALS AND COMPONENTS 

 

 

DOI 10.13164/juniorstav.2024.24085 

8/16 kg/m3 111 651.9 17.8 627.1 710.5 

Naphthalene  kg/m3 34 3.1 0.0 2.9 3.2 

Polycarboxylate kg/m3 9 3.3 0.1 3.2 3.4 

Water kg/m3 111 202.4 22.5 135.1 226.9 

Specimen age day 111 43.5 31.1 7.0 90 

Compressive strength MPa 111 34.7 15.7 4.0 76.1 

Performance evaluation methods 

Two measures are used to assess the accuracy of model predictions. 
The Root Mean Square Error (RMSE) represents the standard deviation between the predicted and actual 

measured values: 

���� � √��� � �∑ 	
� � ������� �  (1) 

R-squared (R2) represents the proportion of variability in measured and predicted values: 

�� � 1 � ∑ 	
� � �������∑ 	
� � 
̅������  (2) 

where 
� represents the �-th measured value, �  represents the �-th predicted value and � is the number of records. 
RMSE values have the same unit as the model outputs and reach positive values in the interval ⟨0; ∞�. Lower 

RMSE values represent higher model accuracy and optimal data fitting. 
R2 measures how well the model fits the data by assessing the proportion of variance in the dependent variable 

explained by the independent variables. The value of R2 reaches the interval ⟨0; 1⟩. A value of 1 indicates a perfect 
fit of the model to the data, while a value of 0 indicates that the model does not explain any part of the variability 
in the dependent variable. 

The K-fold cross-validation (CV) method was used in training the models. This method consists of splitting 
the database into folders of a certain amount, in this case, k = 5 was chosen. The model is then learned from k-1 
folders, where one folder is kept for validation and measures of accuracy are determined for this model (i.e. RMSE 
and R2 values are calculated). The model is then trained on another dataset of k-1 folders, with a different folder 
selected for validation than in the previous step. This process is repeated until the combination of validation folders 
is exhausted. The performance of k-fold cross-validation is then obtained by averaging the measurements from all 
learning steps. While this method can be computationally intensive, it exploits the higher potential even with 
a relatively small database size, unlike the scenario of selecting a random validation set. 

Machine learning models 

There are many different tools for automatic training of ML models. In this paper, the Regression Learner 
application in MATLAB software was used. 

The Regression Learner application trains regression models to predict data. Using this application, it is 
possible to explore data, select features, enter validation schemes, train models, and evaluate results. It is possible 
to use automatic training and search for the best regression type from a list of defined models: linear regression 
models, regression trees, Gaussian process regression models, support vector machines, efficiently trained linear 
regression models, kernel approximation models, ensembles of regression trees, and neural network regression 
models. 

The proposed algorithms were used to train models for predicting the compressive strength of concrete and 
predicting the compressive strength of mortar. These most accurate models were further optimized by adjusting 
the basic hyperparameters, resulting in models with even more accurate predictions. In the case of mortar 
compressive strength prediction, the Gaussian Process Regression (GPR) algorithm was identified as the best 
model, while the Boosted Trees algorithm was selected for concrete compressive strength prediction. 
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3 RESULTS 

This chapter will present the resulting accuracies of the mortar compressive strength prediction model (hereinafter 
referred to as the mortar model) and the concrete compressive strength prediction model (hereinafter referred to 
as the concrete model). Tab. 4 shows the resulting evaluation measures for the mortar model and the concrete 
model, including hyperparameters, model identification and training time – the models were trained using the CV 
method. Fig. 1 and Fig. 2 graphically present the deviation of predicted and measured (actual) values. Tab. 5 and 
Tab. 6 show the predicted compressive strengths of unknown mortar and concrete mix designs that were not 
included in the original database. 

Tab. 4 Overview of ML models, algorithms and hyperparameters used with resulting evaluation measures. 

Model 
identification 

Algorithm Hyperparameters RMSE 
[MPa] 

R2 
[-] 

Training 
time 
[s] 

Mortar model GPR sigma SD = 11.65 2.77 0.97 80.0 

Concrete model Boosted Trees min leaf size = 10, n. of learners = 35 4.23 0.93 2.4 

 

Fig. 1 Predicted and measured values of the compressive strengths of the mortar model (GPR). 



 

JUNIORSTAV 2024 
SECTION 02 

BUILDING MATERIALS AND COMPONENTS 

 

 

DOI 10.13164/juniorstav.2024.24085 

 

Fig. 2 Predicted and measured values of the compressive strengths of the concrete model (Boosted Trees). 

Tab. 5 Predicted compressive strengths of mortars not included in the training data set. 

CEM I 
Mokrá 

[g/256 ml] 

CEM II 
Hranice 

[g/256 ml] 

GGBS 
Štramberk 
[g/256 ml] 

FA 
Chvaletice 
[g/256 ml] 

FA 
Opatovice 
[g/256 ml] 

Specimen 
age 

[day] 

Predicted 
comp. strength 

[MPa] 

350  100   7 36.5 

350    100 7 33.0 

 350  100  7 25.7 

350  100   28 54.2 

350    100 28 44.7 

  350   100   28 36.4 

Tab. 6 Predicted compressive strengths of concretes not included in the training data set. 

CEM I 
Mokrá 
[kg/m3] 

FA 
Opat. 

[kg/m3] 

GGBS 
Štram. 
[kg/m3] 

FGL 
Štram. 
[kg/m3] 

Water 
[kg/m3] 

0/4 
[kg/m3] 

4/8 
[kg/m3] 

8/16 
[kg/m3] 

Naphthal. 
[kg/m3] 

Polycar. 
[kg/m3] 

Spec. 
age 

[day] 

Predicted 
comp. 

strength 
[MPa] 

273 61   187 883 249 670  
 7 33.7 

286  102  184 869 245 659 3.5  7 34.8 

306   50 199 865 244 657  1.5 7 31.7 

273 61   187 883 249 670   28 44.3 

286  102  184 869 245 659 3.5  28 50.2 

306     50 199 865 244 657   1.5 28 50.0 
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4 DISCUSSION 

The mortar database contains 242 entries, and in terms of material, there are 4 types of cements, 3 types of fly ash, 
2 types of slag, and 1 finely ground limestone. Ideally, the database should contain sufficient records to present 
a clear correlation with the output variation. For some cements (CEM II Horné Srnie and CEM III Hranice) and 
the additive GGBS Dětmarovice there are only 15 records in the database. Therefore, the model may be inaccurate 
in predicting the strengths of mortars with cements and additives that had a low number of records in the training 
database. However, CEM I Mokrá is represented in the database by 162 records, and the additive GGBS Štramberk 
by 61 records, which may lead to relatively high accuracy in predicting the strengths of mortars with these 
materials. Compared to the concrete database, the input variables of water and aggregate are not represented in the 
mortar database because these materials were always constant during mortar preparation. 

The concrete database contains 111 records, and in terms of materials, it contains 3 types of cements, 1 type of 
fly ash, 1 type of slag, 1 type of finely ground limestone, 2 types of aggregates, 2 types of plasticizing admixture, 
various doses of water and various doses of aggregates. Most of the records in the concrete database contain 
CEM I Mokrá (101 records), which could lead to more accurate predictions with this cement. On the other hand, 
the cements CEM II Horné Srnie and CEM III Hranice are represented in the database with only 5 records each. 
This low number of records in the database of cements, coupled with the large variety of input variables, may lead 
to a reduction in model accuracy. In addition, compared to the mortar database, the concrete database contains 
different doses of water and different doses of aggregate (divided into 3 fractions). Moreover, it is evident from 
the standard deviations of aggregate and water in the database, which are up to 25 kg/m3, that these variables are 
represented in the database with low variety. While this may lead to more optimal model fitting, the prediction of 
strengths outside the range of input variables from training may be highly inaccurate. 

The resulting concrete and mortar model accuracies are based on the quality of the available database. The 
GPR was chosen as the most accurate algorithm for predicting the compressive strength of mortars, achieving 
RMSE = 2.77 and R2 = 0.97. This model, according to the resulting evaluation gauges, achieves relatively high 
accuracy compared to the concrete model. 

Boosted Trees was chosen as the most accurate algorithm for predicting the compressive strength of concretes, 
achieving RMSE = 4.23 MPa and R2 = 0.93. This model did not achieve very high accuracy according to the 
resulting evaluation gauges. 

In this study [11], the accuracy of the model with GPR algorithm for predicting the strength of high-
performance concrete (HPC) was analysed. The results showed that the models developed in this study performed 
well in predicting the compressive strength of HPC, but GPR-32 (R2 = 0.893; RMSE = 5.46; MAE = 3.86) was 
the most effective model compared to the other algorithms. 

In this study [12] different prediction models for predicting the compressive strength of lightweight concrete 
(LWC) were compared. One of them was the GPR algorithm, which achieved the highest training 
accuracy: R2 = 0.99; RMSE = 1.83; MAE = 1.44. 

In this study [13] extensive data collection of compressive strengths of mortars with 10%–40% fly ash addition 
was carried out, with specimens aged 1-365 days with a total of 8 different fly ashes. The study further developed 
four prediction models for estimating compressive strength, of which the genetic algorithm was found to be the 
most accurate, showing R2 = 0.95 and RMSE = 5.11. 

Using the trained mortar model and concrete model, predictions were made for mixtures that were not included 
in the training database. These mixes were designed with materials that have sufficient representation of records 
in the training database to obtain plausible results. 

5 CONCLUSION 

Two databases were created from the final academic theses – the mortar database and the concrete database. The 
mortar database contains a total of 242 records, while the concrete database contains a total of 111 records. In the 
concrete database, unlike the mortar database, there are variable dosages of aggregates, water, and plasticizer. In 
terms of materials, the database contains several types of cements, fly ashes, slags and one type of finely ground 
limestone. Both of these databases provide a good basis for the creation of a more extensive file with supplemented 
records of the materials used. 

Despite the lack of some records with the materials used, the GPR algorithm was identified as the most accurate 
for predicting the compressive strength of mortar, achieving a remarkable RMSE of 2.77 and R2 of 0.97. In 
contrast, the concrete model using Boosted Trees shows lower accuracy with an RMSE of 4.23 and R2 of 0.93. 
Other studies mentioned in the discussion further confirm the effectiveness of concrete algorithms such as GPR in 
predicting compressive strength for high-strength and lightweight concrete. 
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Further research will focus on collecting additional data to increase the variety of some of the input variables 
in the database, and selecting other more accurate models capable of predicting the mechanical properties of 
mortars and concretes. 
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