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Abstract 

In many calculation approaches in room acoustics, one models the reflection of surfaces via a positive, real 
absorption coefficient, neglecting the fact that the reflection coefficient can have a non-zero phase. For some 
sound-absorbing structures such as resonators, this simplification leads to erroneous results, e.g. when room modes 
are of interest. 

This contribution presents an approach for the calculation of room mode frequencies in a rectangular room 
with complex and frequency-dependent acoustic impedance wall boundary conditions. The results are to be used 
for auralizations of different scenarios in which the modal behaviour of a room is modified, and for evaluation 
by listening tests. 

Keywords 

Complex acoustic impedance, analytical solution, room modes, resonators 

1 INTRODUCTION 

In room acoustics of small spaces, room modes are of interest. This is especially true in cases where music playing, 
music production or listening to music are parts of the programme [1]. Room modes are natural resonances of the 
space, which occur as standing waves. They are commonly associated only with room dimensions. This is 
a reasonable simplification in cases where the room boundaries are rigid or have a nearly real-valued pressure 
reflection factor. With this assumption, no phase shift of the reflection occurs at the boundary and the sound 
absorption coefficient can be effectively used for boundary definition, since it holds only the information about 
the pressure reflection factor amplitude. 

Acoustic practitioners see this simplification applied in common calculation methods – in the well-known 
Sabine's formula for reverberation time calculations [2], but it is also used for image source (IS) and stochastic ray 
tracing (SRT) methods [3], [4]. These methods commonly do not allow to calculate modal behaviour of a space, 
and therefore incorporating possible phase shifts at the boundary is irrelevant for those approaches. 

In contrast, in modelling small spaces at low frequencies (usually assumed to be below their Schroeder 
frequency), room modes occur quite isolated in frequency-wise manner, making their exact spectral shape and 
position important. This leads to the need for a more precise boundary condition representation. Since purely wave-
based methods are computationally expensive for full audible spectrum calculations, some hybrid methods have 
been developed [5], [6]. Some structures commonly used for low-frequency damping, such as resonators, show 
highly complex behaviour, which, when simplified to the sound absorption coefficient, can lead to erroneous 
results. 

Numerical and statistical room acoustic simulations are commonly used for auralizations and listening tests 
[7], [8], [9]. However, in cases where low frequencies and room modes are of interest, it is necessary to use one 
of the hybrid calculation methods. For these models, an analytical solution of the modal frequencies could be used 
as a validation tool. 

A solution of a rectangular room with rigid and non-rigid symmetrical boundary conditions can be found in 
[10]. For non-rigid symmetrical boundaries, except for a 1D simplified geometry, a simple explicit equation for 
the modal behaviour cannot be derived. In the following, the solution from [10] is extended towards asymmetrical 
complex impedance boundary conditions. The problem is expressed and iteratively solved as a minimization 
problem of four equations, three for different directions and one for the general requirement (1) 

� �  �/� (1) 

where �, in m-1, is the wavenumber, �, in rad-1, is the angular frequency and �, in m/s, is the speed of sound in air. 
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2 METHODOLOGY 

 

Fig. 1 Layout of the considered room and the boundary conditions. 

Fig. 1 depicts the geometry of the considered rectangular room, for which we want to calculate the modes.We 
define the normalized surface impedance of wall surfaces � as: 

� � �	�
 (2) 

where ��, in Pa.s.m-1, is the acoustic impedance at the boundary and �
 � ��, in Pa.s.m-1, is the characteristic 
impedance of air. �, in kg/m3, is the density of air and �, in m/s, is the speed of sound propagation in air. The 
normalized surface impedance can be calculated from the pressure reflection factor as: 

� � 1 � �
1 � � (3) 

The solution for asymmetrical impedance boundary conditions begins with the following boundary conditions 
for the � direction: 

���
d�
d� � i��      for � � 0 (4) 

���
d�
d� � �i�� for � � �� (5) 

where ζ�� and ζ�� are the normalized surface impedances of the wall surfaces at � �  0 and � � �� respectively, �, in Pa, is the acoustic pressure at these boundaries and � is the wavenumber. In this case, the general wave 
equation solution can be formulated as: 

���� � � exp��i���� � �$ exp�i���� (6) 

where � is the total acoustic pressure and �  and �$ represent the acoustic pressure amplitudes of the acoustic 
waves travelling in the positive and negative � direction. Inserting this equation into the boundary conditions leads 
to the following set of equations: 

� �� � ������ � �$�� � ������ � 0 (7) 

� �� � ������ � �$�� � ������ exp�2i����� � 0 

 
(8) 

To obtain a non-vanishing solution, the determinant of the coefficients needs to be zero: 

&�� � ������ �� � ������
�� � ������ �� � ������ exp�2i�����&  �  0 (9) 
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This ultimately leads to the following condition that needs to be satisfied: 

'()*+�+ � �� � �������� � ������
�� � �������� � ������ (10) 

A similar condition holds for the , and � directions, leading to three equations to be satisfied. The search for 
solutions for the angular frequency and the three wavenumbers satisfying the above equations, as well as the 

general wave propagation condition Eq. (1), can be performed by setting � � �� � �-��( � �.( � �/(01/(
 and 

minimizing the three quantities f1, 2( and 23 by varying the three wavenumber components ��, �. and �/  in 3D: 

21 � 4'()*+�+ � �� � �������� � ������
�� � �������� � ������4

(
 (11) 

2( � 4'()*5�5 � -� � �.��.0-� � �.��.0
-� � �.��.0-� � �.��.04

(
 (12) 

23 � 4'()*6�6 � �� � �/��/��� � �/��/�
�� � �/��/��� � �/��/�4

(
 (13) 

Note that although a minimum search can be performed for each value of the angular frequency, satisfactory 
solutions of Eqs. (11), (12), (13) are only expected for a discrete number of angular frequencies. 

Alternatively, in addition to the three wavenumber components, also � can be left free in the search, by also 
requiring that: 

27 � 4��( � �.( � �/( � �(
�( 4 (14) 

Note that the approach allows scenarios in which the impedances are complex and frequency-dependent. 

3 RESULTS 

In this work, without loss of generality, we illustrate the approach for axial modes, i.e., „1D“ modes of which only 
one of the ��, �. and �/ is non-zero. That is possible because the more complicated modes are composed of the 
same allowed sets of ��, �. and �/values, fulfilling Eq. (1). For axial modes in each direction, the minimization 
problem simplifies to: 

28 � 4'(9*+�+ � ��/� � ��������/� � ������
��/� � ��������/� � ������4

(
 (15) 

In 1D, it can be shown how the direct solution of Eq. (10) holds for some special cases.For example, in the 
case of symmetrical boundary conditions, with ζ�� � ��� ≫ 1 and ��� � ��� ≪ 1, we obtain the following set of 
solutions: 

�� � <�
π
��  (16) 

The assymetrical case ζ�� ≪ 1 ≪ ζ�� results in: 

�� � ><� � 1
2? π

��  (17) 

This adequately reflects the acoustic pressure mimima on the boundary � �  0 and maxima on the other one � � ��. The other asymmetrical case of ��� ≫ 1 and ��� � @, ��� being purely real and ��� being purely imaginary, 
leads to the following solution: 

�� � ><� � 1
4? π

�� (18) 

Adding an imaginary part (and thus non-zero phase) to a surface impedance obviously modifies the modes. 
Fig. 1 illustrates this effect for an axial mode in the x-direction. We have applied the Nelder-Mead simplex 
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algorithm [11], [12], [13] for minimizing Eq. (15) near a mode with real surface impedances (<� � 2) for different 
imaginary parts of ��� and with ��� ≫ 1. 

 

Fig. 2 Influence of a non-zero imaginary part on one of the room mode resonance frequencies. 

As expected, the modal frequency deviates from the value for the case with a real impedance proportionally to 
the magnitude of the imaginary part. Adding a non-zero phase to the reflection coefficient can be seen as equivalent 
to changing the acoustic path length of the room along the propagation direction, and thus the effective dimension 
of the room along that direction. 

The following example shows the results for a two-dimensional room with dimensions 4 × 5.6 m and 
frequency-independent boundary conditions: ��� � ��. � ��. � 103, ��� � 0.5@. The left panel of Fig. 2 shows 
that the minimization converges reasonably well. The solution enables extracting a set of possible k values for 
each direction. 

 

Fig. 3 Results of a wavenumber search in a 2D room situation. The left panel shows the final residuals of f5 
for each initial wavenumber �9D9E � �/�. The right panel shows the amplitude of the wavenumbers to which 

the minimization converged. 

Fig. 4 shows the result of the 3D minimum search for the function: 

2F-��, �. , �0 � 4��( � �.( � �(
�( 4 /� (19) 

where �� and �. were restricted to the previously extracted values for two cases of non-rigid boundaries with the 
complex reflection factor amplitude |���| � 0,9 but different phases. The left panel shows the zero-phase reflection 
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factor results, while the right panel shows the π/3 phase-shifted results. The crosses show the center of mass of 1/2F local maxima regions. 

 

Fig. 4 Illustration of a 2D room mode search based on the previously extracted possible wavenumbers. Both 
cases share the same amplitude of the pressure reflection factor at the boundary � � ��, but they are phase-

shifted by π/3. 

Fig. 5 shows a specific pair of modes for the previously calculated cases. These modes share their �. value, 
whereas their �� value is similar but slightly different. Fig. 5 nicely demonstrates that in the case of a complex 
reflection factor, the acoustic pressure is no longer maximum at the boundary. 

 

Fig. 5 Mode shape (pressure oscillation amplitude) for two similar modes with different boundary conditions. 
Both cases share the same pressure reflection factor amplitude at the boundary � � ��, but they are phase-

shifted by π/3. 

An important advantage of the proposed approach is the possibility to use frequency-dependent boundary 
conditions. Fig. 6 shows the results for a 1D case with two variants of boundary conditions. Both variants assume ��� � 103. The first (blue) variant implements a simple Helmholtz resonator (HR) complex impedance boundary 
condition calculated as: 

�� � 0.2�K � iL2.371� � �K cot�0.2�/��P (20) 

whereas the second (orange) variant uses the mean absolute value of the first one. 
This choice is inspired by the HR surface acoustic impedance formulation proposed in [14]: 

�� � �Q � iL�R � �K cot��S�P (21) 

The results show that incorporation of a Helmholtz resonator can shift the room modes around their resonant 
frequency compared to the rigid boundary situation. This effect is more pronounced the closer they are to the 
Helmholtz resonance frequency. Secondly, the complex and frequency-dependent boundary conditions complicate 
the prediction of modes in multidimensional cases. 
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Fig. 6 Comparison between a frequency-dependent impedance boundary condition (blue) and a constant real-
valued impedance boundary condition (orange) in terms of resulting possible wavenumbers in 1D. The two 
left panels are similar to those in Fig. 3, showing the minimization results for each angular frequency. The 
right panel illustrates the local minima regions for frequency-dependent (grey dots) and independent (green 

dots) impedance boundary conditions, as well as the respective minima positions denoted by blue and orange 
crosses. 

4 DISCUSSION 

This contribution extends the solution for symmetrical boundary conditions in a rectangular room mode frequency 
and wavenumber calculation described in [10] towards non-symmetrical and frequency-dependent boundary 
conditions. It presents several examples to demonstrate the current state of the proposed solution and its limitations. 

First, several explicit solutions were derived for special cases. They met the expected behaviour with both real-
valued and complex boundary conditions, some of which (the symmetrical cases) can also be found in [10]. 

Next (Fig. 1), the iterative approach was tested in 1D with several different constant impedance boundary 
conditions applied to one of the surfaces. These varied in the imaginary part and showed that (i) a non-zero phase 
of the impedance leads to shifts in mode frequency, (ii) the solution oscillates around one of the two real-valued 
solutions depending on the amplitude of the impedance and (iii) the minimization does not reveal the exact solution 
for Eq. (1) since it allows real-valued angular frequencies only. The latter is currently one of the main limitations 
to be resolved in future work. 

The examples in Fig. 2, Fig. 3 and Fig. 4 extended the solution to 2D, still for frequency-independent boundary 
conditions. The possible wavenumber values were derived from the solution for axial modes in each direction. 
Based on these sets of values and angular frequency, a local minimum search was performed on the three-
dimensional grid of values calculated via Eq. (18). The local minima were isolated based on an absolute threshold. 
The approach works well for simple cases. However, the threshold for identifying a minimum needed to be 
adjusted for each case manually to prevent skipping or merging any of the minima. This significantly limits the 
current robustness and first-derivative sign-based minimum identification algorithms should be adopted to 
improve the overall performance of the method. 

The last example (Fig. 5) showed the mode search in 1D for the frequency-dependent complex boundary 
condition in the form of a Helmholtz resonator. The results reveal that a Helmholtz resonator can cause modal 
redistribution around its resonant frequency, in some special cases causing mode splitting. Besides this finding, 
the results uncovered several challenges to be overcome to make this approach usable. First, the search for 
wavenumbers resulting from the complex frequency-dependent boundary is complicated and frequency-
dependent, which makes it impossible to extract a small subset of values. Instead, the whole solution needs to be 
considered. Second, related, it is also challenging to extend the frequency-dependent solution to more dimensions. 
Since the impedance depends implicitly on k, rather than on ��, �. or �/, the solution does not consist of a choice 
from independent sets of values. From this perspective, a further improved minimization approach seems to be 
more suitable than a grid search. 
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5 CONCLUSION 

In this contribution, we extended the analytical solution of room mode calculation towards asymmetrical and 
frequency-dependent boundary conditions on the surfaces of a rectangular room. Even though the solution is not 
complete and we showed only some key examples, some conclusions can be made: 

• Complex impedance boundary conditions shift the mode frequency solution around the real-valued 
boundary condition equivalent solution based on their amplitude. This is equivalent to an effective 
change in room dimensions. 

• The minimization approach applied does not reveal an exact solution because the angular frequency 
was limited to real values (zero imaginary part). 

• The grid search approach can be used to reveal modes in multidimentional cases but only restricted 
to frequency-independent boundary conditions. The absolute threshold local minima search does not 
seem to be robust for this application and should be improved. 

• Frequency-dependent boundary conditions complicate the solution predominantly in 
multidimentional cases, where it is not simply possible to find a solution for wavenumber in one 
direction independent on the other. 

Overall, the approach gives a satisfactory overview of possibilities and challenges related to minimization-
based search for room modes in a rectangular room with complex impedance boundary conditions applied. Further 
research should focus on the search for an exact solution and frequency-dependent complex impedance boundary 
conditions applied in more than one dimension. 
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